QUESTION PAPER FOR COMMON ADMISSION TEST 2024 612 MATHEMATICS

- 1. The set of all points at which the function $f : \mathbb{R} \to \mathbb{R}$ defined by f(x) = x [x] is continuous is
 - (A) \mathbb{Z} (B) $\frac{\mathbb{Q}}{\mathbb{Z}}$ (C) $\frac{\mathbb{R}}{\mathbb{Z}}$
 - (D) $\frac{\pi}{\mathbb{Q}}$

2. The LUB of all real numbers in (0, 1) whose decimal expansion contains only 0 and 1 is

- (A) 1
- (B) 0.11
- (C) 0.1
- (D) $\frac{1}{9}$
- 3. Statement 1: If the sequences (x_n) and (x_ny_n) are bounded, then (y_n) is bounded.
 Statement 2: If (x_n) and (y_n) are convergent sequences, then the sequence
 S_n = min{x_n, y_n} is convergent.

Consider the above statements and choose the correct alternatives.

- (A) Both the statements are true
- (B) Statement 1 is false, Statement 2 is true
- (C) Statement 1 is true, Statement 2 is false
- (D) Both statements are false
- 4. Which of the following is **not** true for any vector space *V*?
 - (A) Basis of *V* is unique
 - (B) If the basis of V is finite, then V is finite dimensional
 - (C) If W is the subspace of V and dim $V = \dim W$, then V = W
 - (D) If V has a basis of n elements, then any set of n + 1 is linearly independent

- 5. Let $S, T: V \to W$ be a linear transformation such that ker (T) = ker (S) and Image (T) = Image (S). Then
 - (A) S = T which is not identity
 - (B) S may not be equal to T
 - (C) Both *S* and *T* equal to the identity map
 - (D) V = W always
- 6. A fair six-faced die is rolled 12 times. The probability that each face turns up twice is equal to

(A)
$$\frac{12!}{6!6!6^{12}}$$

(B) $\frac{2^{12}}{2^{6}6^{12}}$
(C) $\frac{12!}{2^{6}6^{12}}$
(D) $\frac{12!}{6^{2}6^{12}}$

- 7. Let $D = \{z \mid |z 1| < 1\}$ and let $f: D \to \mathbb{C}$ be analytic function such that f(1) = 1and $|f(1)| \ge |f(z)| \quad \forall z \in D$. Then $f\left(\frac{3}{2}\right) =$
 - (A) 1
 - (\mathbf{B}) *i*
 - (C) 1 + (D) 1
 - $(D) \frac{1}{2}$

8. Let f be an entire function, $|f'(z)| \le 3$ and f'(0) = 2. Then f'(1) =

- (A) 1
- (B) 2
- (C) 3
- (D) 0

9. If
$$\int_{|z| \le 2} \frac{dz}{z - 1} = 2\pi i$$
, then $\int_{|z| \le 2} \frac{dz}{(z - 1)^{10}} =$
(A) $\frac{\pi}{2}$

- (B) $20\pi i$
- (C) *π*
- (D) 0

10. Let $f: [0, 1] \rightarrow [0, 1]$ be a continuous function. Then

- (A) f is always one-one
- (B) f is always onto
- (C) there exists $c \in [0, 1]$ such that f(c) = c
- (D) f is not always uniformly continuous
- 11. The maximum possible order of a simple graph G with minimum degree 3 and size 15 is
 - (A) 7
 - (B) 8
 - (C) 9
 - (D) 10

12. Which of the following sequences is **not** graphical?

- $(A) \quad (8, 1, 1, 1, 1, 1, 1, 1, 1)$
- (B) (3, 3, 3, 3, 3, 3)
- (C) (7, 4, 3, 2, 2, 1, 1)
- $(D) \quad (8, 3, 3, 3, 3, 3, 3, 3, 3, 3)$

13. The radius of convergence of power series $f(x) = \sum_{n=2}^{\infty} \log(n) x^n$ is

- (A) 0
- **(B)** 1
- (C) 3
- (D) ∞

14. Which of the following set of functions from \mathbb{R} to \mathbb{R} is a vector space over \mathbb{R} ?

(A)
$$S_1 = \left\{ f : \lim_{x \to 3} f(x) = 0 \right\}$$

- (B) $S_2 = \left\{ f : \lim_{x \to 3} f(x) = 1 \right\}$
- (C) $S_3 = \left\{ f : \lim_{x \to 3} f(x) = 3 \right\}$
- (D) $S_4 = \left\{ f : \lim_{x \to 3} f(x) = 4 \right\}$
- 15. Which of the following statements is true?
 - (A) If a finite group G contains an element of even order, then order of G is even
 - (B) If a finite group G contains an element of even order, then order of G is odd
 - (C) If a finite group G contains an element of even order, then order of G is prime
 - (D) If a finite group G contains an element of even order, then order of G is a perfect square
- 16. The function $f: \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^{z} + e^{-z}$ has
 - (A) finitely many zeros
 - (B) no zeros
 - (C) only real zeros
 - (D) has infinitely many zeros

17. Let $f: R \to R$ be defined as $f(x) = \begin{cases} 0, & x \text{ is irrational} \\ \sin|x|, & x \text{ is rational} \end{cases}$

Then which of the following is true?

- (A) f is discontinuous for all x
- (B) f is continuous for all x
- (C) f is discontinuous at $x = k\pi$, where k is an integer
- (D) f is continuous at $x = k\pi$, where k is an integer

18. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. The probability that they are both aces if the first card is replaced, is

(A)
$$\frac{1}{221}$$

(B) $\frac{1}{169}$
(C) $\frac{1}{122}$
(D) $\frac{1}{196}$

19. If *p* is a polynomial with p(0) = -1, $p'(x) > 0 \forall x$, then

- (A) p has more than one real root
- (B) p has exactly one positive root
- (C) *p* has exactly one negative root
- (D) p has no real root

20. Consider the functions $f, g: \mathbb{Z} \to \mathbb{Z}$ defined by f(n) = 3n+2, $g(n) = n^2 - 5$. Then

- (A) both f and g are not one-one
- (B) f is one-one but not g
- (C) g is one-one but not f
- (D) both f and g are one-one
- 21. The number of distinct homomorphisms from \mathbb{Z}_5 to \mathbb{Z}_7 is
 - (A) 0
 - **(B)** 1
 - (C) 5
 - (D) 7
- 22. The order of the group $GL(2, \mathbb{Z}_2)$ is
 - (A) 3
 - (B) 6
 - (C) 9
 - (D) 12

23. The number of isomorphisms from \mathbb{Z}_6 to S_3 is

- (A) 0
- **(B)** 1
- (C) 2
- (D) 3

24. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous map and let $Z(f) = \{x \in \mathbb{R} | f(x) = 0\}$. Then Z(f) is always

- (A) compact
- (B) connected
- (C) open
- (D) closed

25. $\sin \frac{1}{x}$ is uniformly continuous in the interval

- (A) (0,∞)
- (B) [0,∞)
- (C) [1,∞)
- (D) (-1, 1)

26. The function $f(x) = \begin{cases} x^2 - 3x + 2, x \in \mathbb{Q} \\ 0, x \in \mathbb{Q}^c \end{cases}$ is continuous at

- (A) exactly one point
- (B) exactly two points
- (C) exactly three points
- (D) all integers

$27. \qquad \lim_{x \to \infty} (\cos x)^{1/x^2} =$

- (A) 0
- (B) $\frac{e}{2}$
- (C) $\frac{1}{\sqrt{e}}$
- \sqrt{e}
- (D) e^2

28.
$$\lim_{x \to \infty} \sum_{k=1}^{n} \frac{n}{k^2 + n^2} =$$
(A) e
(B) $\frac{\pi}{4}$
(C) $\frac{2}{3}$
(D) ∞

29. The dimension of the vector space $\{(x, y, z, w) \in \mathbb{R}^4 : x + y = z + w\}$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

30. Let $f: \mathbb{C} \to \mathbb{C}$ be defined by $f(z) = \cos z$. Then

- (A) $|f(z)| \leq 1$
- (B) $|f(z)| \leq \pi$
- $(C) |f(z)| \le |z|$
- (D) f is unbounded

31. Let F_n be finite set with *n* elements. Then the number of one-one maps from F_5 to F_7 is

- (A) 35 (B) $\begin{pmatrix} 7\\5 \end{pmatrix}$ (C) 5! (D) 5! $\begin{pmatrix} 7\\5 \end{pmatrix}$
- 32. Let $\alpha_1, \alpha_2, ..., \alpha_{2023}$ be the roots of the equation $1 + x^{2023} = 0$. Then the value of the product $(1 + \alpha_1)(1 + \alpha_2)...(1 + \alpha_{2023})$ is
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 2023

33. Let $D = \{z \in \mathbb{C} ; |z| < 1\}$ and $f: D \to \mathbb{C}$ be defined by

$$f(z) = z - 25z^3 + \frac{z^5}{5!} - \frac{z^7}{7!} + \frac{z^9}{9!} - \frac{z^{11}}{11!}.$$

Statement A: f has three zeros (counting multiplicity) in D. Statement B: f has one zero in $U = \{z \in \mathbb{C} ; \frac{1}{2} < |z| < 1\}$.

Then

- (A) Both Statement A and Statement B are true
- (B) Statement A is true and Statement B is false
- (C) Statement A is false and Statement B is true
- (D) Both Statement A and Statement B are false

34. Let G be a finite group and let $a \in G$ be an non identity element such that $a^{20} = e$. Which of the following cannot be the possible order of G?

- (A) 12
- (B) 9
- (C) 20
- (D) 15
- 35. Let V be a 7 dimensional vector space and W and Z be subspaces of dimensions 4 and 5 respectively. Which of the following is not possible for dim $(W \cap Z)$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

36. Let *p* be a polynomial of degree 2n + 1, $n \ge 1$ with real coefficients. Then *p* has

- (A) exactly 2n + 1 fixed points
- (B) at least one fixed points
- (C) *n* fixed points
- (D) at most one fixed points

37. The eigen values of
$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$
 are

- (A) $\cos\theta$ and $\sin\theta$
- (B) $e^{i\theta}$ and $e^{-i\theta}$
- (C) 1 and 2
- (D) $\tan \theta$ and $\cot \theta$

- 38. Let $f: [0, 1] \rightarrow [0, 1]$ be continuous and f(0) = 0 and f(1) = 1. Then f is necessarily
 - (A) injective but not surjective
 - (B) surjective but not injective
 - (C) bijective
 - (D) surjective
- 39. Let $P = \{(x, y, z) \in \mathbb{R}^3 | x + y z = 0\}$ and $A : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation satisfying $A(v) = 0 \forall v \in P$ and also A(0, 0, 1) = (0, 0, 0). Then
 - (A) dimension of null space of A is 2
 - (B) A is the zero linear transformation
 - (C) Image $A = \mathbb{R}^3$
 - (D) dimension of the image of A is 2

40. If
$$\lim_{x \to 0} \left(\frac{1+cx}{1-cx}\right)^{\frac{1}{x}} = 4$$
, then $\lim_{x \to 0} \left(\frac{1+3cx}{1-3cx}\right)^{\frac{1}{x}}$

- (A) 2
- (B) 4
- (C) 16
- (D) 64

41. The equation
$$\left(x^2 + y^2 - 1\right)\frac{\partial^2 y}{\partial x^2} + 2\frac{\partial^2 u}{\partial x \partial y} + \left(x^2 + y^2 - 1\right)\frac{\partial^2 u}{\partial y^2} = 0$$
 is

- (A) parabolic in the region $x^2 + y^2 > 2$
- (B) hyperbolic in the region $x^2 + y^2 > 2$
- (C) elliptic in the region $0 < x^2 + y^2 < 2$
- (D) hyperbolic in the region $0 < x^2 + y^2 < 2$
- 42. Which of the following number can be an order of a permutation σ of 11 elements such that σ does not fix any elements?
 - (A) 14
 - (B) 15
 - (C) 16
 - (D) 17

43. The last digit of $(24)^{2024}$ is

- (A) 0
- (B) 2
- (C) 4
- (D) 6

44. Let
$$f_n(x) = \frac{x^n}{1+x}$$
, $g_n(x) = \frac{x^n}{1+nx}$ for $x \in [0,1]$. Then

- (A) both $\{f_n\}$ and $\{g_n\}$ converge uniformly
- (B) only $\{f_n\}$ converges uniformly
- (C) only $\{ g_n \}$ converges uniformly
- (D) both $\{f_n\}$ and $\{g_n\}$ do not converge uniformly

45. Let $f: [0, 1] \to \mathbb{R}$ be continuous function and f(0) = 0 and f(1) = 1. Then

- I: there exists $c \in [0, 1]$ such that f'(c) = 1
- II: there exist $c_1, c_2 \in [0, 1]$ such that $f'(c_1) + f'(c_2) = 2$

Then

- (A) only I is true
- (B) only II is true
- (C) both I and II are true
- (D) both I and II are false
- 46. The number of vertices in polyhedron having 40 edges and 12 faces is
 - (A) 12
 - (B) 15
 - (C) 20
 - (D) 30
- 47. The chromatic number of a simple connected graph of order n which does not contain any odd length cycle is
 - (A) *n* − 1
 - (B) 3
 - (C) 2
 - (D) *n*

- 48. Let ω be the 7th root of unity. Then the cubic polynomial with integer coefficients having $\omega + \omega^{-1}$ as a root is
 - (A) $x^{3} 7 = 0$ (B) $x^{3} + x^{2} - 2x - 1 = 0$ (C) $x^{3} + 2x^{2} + 2x + 1 = 0$ (D) $x^{3} + 7 = 0$

49. If the scalar product (dot product) of two unit vectors is zero, they are

- (A) linearly dependent
- (B) part of an orthonormal basis
- (C) pointing in the same direction
- (D) at an angle of 180 degrees to each other

		(1	1.00001	1		
50.	The matrix	1.00001	1	1.00001	has	
		1	1.00001	1		

- (A) all eigen values positive
- (B) one positive eigen value and one negative eigen value
- (C) all eigen values zero
- (D) all eigen values negative
- 51. The values of i^{i} in the form a + bi

(A)
$$e^{\frac{-\pi}{2}}$$

(B) $\left\{ e^{\frac{-k\pi}{2}} \mid k \in \mathbb{Z} \right\}$
(C) $\cos i + i \sin i$
(D) $\left\{ e^{\frac{-\pi}{2} + 2k\pi} \mid k \in \mathbb{Z} \right\}$

52. The equation $y \frac{\partial^2 u}{\partial x^2} + 4x \frac{\partial^2 u}{\partial y^2}$ is hyperbolic in the quadrants

- (A) I and II
- (B) III and IV
- (C) I and III
- (D) II and IV

53. Let f(z) be a non constant entire function. Which of the following is true?

- (A) $\operatorname{Re} f(z) = \operatorname{Im} f(z)$
- (B) |f(z)| < 1
- (C) $\operatorname{Im} f(z) < 0$
- (D) $f(z) \neq 0$

54. If $A = \left(0, \frac{1}{10}\right)$ in the metric space M = (0, 1) with the usual distance metric, then \overline{A}

(A)
$$\left(0,\frac{1}{10}\right)$$

(B) $\left(0,\frac{1}{10}\right)$
(C) $\left[0,\frac{1}{10}\right]$
(D) $\left[0,\frac{1}{10}\right]$

55. The dimension of the vector space of all symmetric matrices of order $n \times n$ (n ≥ 2) with real entries and trace equals to zero is

(A)
$$\frac{n^2 - n}{2} - 1$$

(B) $\frac{n^2 + n}{2} - 1$
(C) $\frac{n^2 - 2n}{2} - 1$
(D) $\frac{n^2 + 2n}{2} - 1$

56. The number of 4 digit numbers with no two digits common is

- (A) 2536
- (B) 3536
- (C) 4536
- (D) 5536

The set of all matrices with trace 5 is 57.

- (A) a vector space of dimension $n^2 1$
- (B) a vector space of dimension $n^2 5$
- (C) a vector space of dimension n
- (D) not a vector space

The number of 8 digit numbers that can be formed using 1, 2, 3, 4 is 58.

- (A) 8!
- $(B) 4^8$
- (C) 8^4
- (D) 4!

The set of linearly independent solutions of the differential equation $\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} = 0$ is 59.

- (A) $\{1, x, e^x, e^{-x}\}$
- (B) $\{1, x, e^{-x}, xe^{-x}\}$ (C) $\{1, x, e^{x}, xe^{x}\}$
- (D) $1, x, e^x, xe$

60. Which of the following functions is uniformly continuous?

(A)
$$f(x) = \sin^2 x, x \in \mathbb{R}$$

(B)
$$f(x) = \frac{1}{x}, x \in (0,1)$$

(C)
$$f(x) = x^2, x \in \mathbb{R}$$

(D)
$$f(x) = x + \frac{1}{x}, x \in \mathbb{R}$$

61. The interior of the set $\{R \in \mathbb{Q} : 0 < r < \sqrt{2}\}$ is

- (A) \mathbb{Q}
- (B) **ℝ**
- (C) *\phi*
- $(D) \quad \mathbb{Q} \left\{ 0 \right\}$

62. The Laplace transform of the equation $\iint_{0}^{t} \iint_{0}^{t} (t \sin t) dt dt dt$ is

(A)
$$\frac{2}{s^2(s^2+1)^2}$$

(B) $\frac{2}{s^2(s+1)}$
(C) $\frac{2}{s(s+1)^2}$
(D) $\frac{2}{s^2(s^2+1)}$

63. If $G \neq \{e\}$ is a group having no proper subgroup, then G is a

- (A) cyclic group of prime order
- (B) cyclic group of even order
- (C) cyclic group of odd order
- (D) abelian group of even order

64. In a group of 100 people, each one knows at least 67 other people. Then the minimum number of people who are mutually friends is

- (A) 0
 (B) 2
 (C) 3
- (D) 4

65. Let *A* be the following subset of

$$\mathbb{R}^{2}; A = \left\{ (x, y) : (x+1)^{2} + y^{2} \le 1 \right\} \cup \left\{ (x, y) : y = x \sin \frac{1}{x}, x > 0 \right\}.$$

Then

- (A) A is compact
- (B) A is connected
- (C) A is bounded
- (D) A is not connected

66. Consider the three statements:

- (I) $n^2 + n$ is divisible by 2.
- (II) $n^3 n$ is divisible by 3.
- (III) $n^5 5n^3 + 4n$ is divisible by 5.

Which of the following is true?

- (A) Only (I)
- $(B) \quad (I) \text{ and } (II) \\$
- $(C) \quad (I) \text{ and } (III)$
- $(D) \quad (I), (II) \text{ and } (III)$
- 67. The order of the permutation (1 4 7) (2 5) in the symmetric group S_{12} is
 - (A) 7
 - (B) 5
 - (C) 6
 - (D) 12

68. The order of the coset $\overline{3}$ in the quotient group $\frac{\mathbb{Z}_{10}}{\langle 4 \rangle}$ is

- (A) 2
- (B) 3
- (C) 4
- (D) 5

- 69. Let G be a group of order 289. Then G is
 - (A) cyclic
 - (B) abelian
 - (C) not cyclic
 - (D) non-abelian
- 70. Let *G* be a group of order 40. Then *H* and *K* be two subgroups of *G* of orders 4 and 5. Then the order of the quotient group $G/H \cdot K$ is
 - (A) 1
 - (B) 2
 - (C) 10
 - (D) 8

71. Let *G* be the group of mappings $f_{x,y}: R \to R$ defined by $f_{x,y}(a) = xa + y$ for all

 $a \in R$. Then the group inverse of $f_{2,3}$ is

- (A) $f_{1,-3} \frac{1}{2}, -\frac{3}{2}$
- (B) $f_{1,\frac{3}{2},\frac{3}{2}}$
- (C) $f_{-1,\frac{3}{2},\frac{3}{2}}$
- (D) $f_{3,-1} \over \frac{1}{2}, \frac{1}{2}$
- 72. The group $\mathbb{Z}_2 \times \mathbb{Z}_5$ is
 - (A) not cyclic
 - (B) cyclic
 - (C) abelian but not cyclic
 - (D) non-abelian

73. Every non-trivial subgroup of the group of integers with respect to addition is

- (A) non-abelian
- (B) finite
- (C) non-cyclic
- (D) infinite

- 74. Let *G* be a group of order 28 with an element of order 7. Then the number of elements of order 7 in G is
 - (A) 14
 - (B) 7
 - (C) 6
 - (D) 4
- 75. Let G be the symmetric group of degree 3. Then the number of subgroups of G is
 - (A) 2
 - (B) 4
 - (C) 5
 - (D) 6

76. Let $R = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} : a, b \text{ are real numbers} \right\}$. Then R under matrix addition and matrix

multiplication is a

- (A) field
- (B) non-commutative ring
- (C) commutative ring but not a field
- (D) not a ring
- 77. Let $X = (x_{ij})$ be a matrix of order $m \times n$, where $x_{ij} = 1$ for all i, j. Then rank(X) is
 - (A) m + n
 - (B) *m*
 - (C) *n*
 - (D) 1

78. The vectors (m, n, 0), (1, 0, p) and (1, 1, 0) are linearly independent in R^3 if

- (A) $p \neq 0$ and $m \neq n$
- (B) $p \neq 0$ and m = n
- (C) $m \neq n$
- (D) m = n = p

79. The number of non-trivial subspaces of \mathbb{R}^3 over \mathbb{R} is

- (A) 6
- (B) 3
- (C) 2
- (D) ∞

- 80. If the point *A*(3, 3) is shifted by a distance $\sqrt{2}$ unit parallel to the line *x* = *y*, then the coordinates of *A* in the new position is
 - (A) (5, 4) (B) $(3+\sqrt{2},3+\sqrt{2})$
 - (**b**) $(3+\sqrt{2},3+\sqrt{2})$
 - (C) (3, 2)(D) (2, 3)
- 81. The slopes of the lines represented by $x^2 + 5hxy + 2y^2 = 0$ are in the ratio 2:3, then *h* equals
 - (A) $\pm \frac{1}{\sqrt{2}}$ (B) $\pm \frac{1}{\sqrt{3}}$
 - (C) ±2
 - (D) ±3
- 82. Let *I* be the ideal generated by 4 in the ring of integers. Then *I* is
 - (A) a maximal ideal
 - (B) a prime ideal
 - (C) neither maximal nor prime
 - (D) prime but not maximal
- 83. Let *R* be a commutative ring of order 102 and let *I* be an ideal of order 34 in *R*. Then the quotient ring R/I is
 - (A) a commutative ring
 - (B) an integral domain
 - (C) a field
 - (D) a non-commutative ring
- 84. An example of a non-commutative ring is the ring of
 - (A) integers
 - (B) rationals
 - (C) quaternions
 - (D) modulo classes

85. Consider the ring $S = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \text{ with } b \text{ is odd} \right\}$ with respect to addition and

multiplication of rationals. Then S has

- (A) infinitely many maximal ideals
- (B) finitely many maximal ideals
- (C) no maximal ideal

(D) a unique maximal ideal
$$S = \left\{ \frac{a}{b} \in S : a, b \in \mathbb{Z} \text{ with } a \text{ is even} \right\}$$

- 86. Consider the polynomial ring R[x] where R is the field of real numbers. A maximal ideal in R[x] is an ideal generated by
 - (A) an irreducible polynomial
 - (B) a reducible polynomial
 - (C) a constant polynomial
 - (D) a polynomial
- 87. If 5x 12y 10 = 0 and 12y 5x + 16 = 0 are two tangents to a circle, then the radius of the circle is
 - (A) 1
 - (B) 2
 - (C) 4
 - (D) 6
- 88. The vertex of the parabola $x^2 + 2y = 8x 7$ is

89. The angle between the tangents drawn from the point (1, 4) to the parabola $y^2 = 4x$ is

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

90. If the fourth roots of unity are z_1 , z_2 , z_3 , z_4 , then $z_1^2 + z_2^2 + z_3^2 + z_4^2$ is equal to

- (A) 1
- (B) 0
- (C) *i*
- (D) –*i*

91. The equation |z + 1 - i| = |z + i - 1| represents a

- (A) pair of straight lines
- (B) circle
- (C) parabola
- (D) hyperbola

92. The radius of the circle $\frac{|z-i|}{|z+i|} = 3$ is equal to

93. The equation $z\overline{z} + (1-3i)z + (1+3i)\overline{z} + 6 = 0$ represents a circle of radius

- (A) 2
- (B) $\sqrt{2}$
- (C) 3
- (D) $\sqrt{3}$

94. Solution of the differential equation $x \, dy - y \, dx = 0$ represents a

- (A) parabola whose vertex is the origin
- (B) circle whose center is the origin
- (C) rectangular hyperbola
- (D) straight line passing through the origin

95. A solution of the differential equation $\left(\frac{dy}{dx}\right)^2 - x\frac{dy}{dx} + y = 0$ is

- (A) y = 2
- (B) y = 2x
- (C) y = 2x 4
- (D) $y = 2x^2 4$

96. If
$$y = x^{(\log x)^{\log \log x}}$$
, then $\frac{dy}{dx}$ is equal to

- (A) $\frac{y \log y}{x \log x} (2 \log \log x + 1)$
- (B) $\frac{x \log x}{y \log y} (2 \log \log x + 1)$

(C)
$$\frac{2y \log y}{x \log x} (\log \log x + 1)$$

(D)
$$\frac{2x\log x}{y\log y} (\log\log x + 1)$$

97. If $f(x) = \sin\left(\frac{\pi}{2}[x] - x^3\right), 2 < x < 3$ and [x] denotes the greatest integer less than or equal to x, then $f'\left(\sqrt[3]{\frac{\pi}{2}}\right)$ is equal to

- (A) ∞
- (B) -1
- (C) 1
- (D) 0

98. Let f(x) be a function defined for all $x \in R$. If f is differentiable and $f(x^3) = x^3$ for all $x \in R(x \neq 0)$, then f'(27) is equal to

- (A) 0
- (B) 5
- (C) 15
- (D) 25

99. If f(x) = |x-1| and $g(x) = f[f\{f(x)\}]$ then, for x > 2, g'(x) is equal to

- (A) -1 if 2 < x < 3
- (B) 1 if 2 < x < 3
- (C) 1 for all x > 2
- (D) 0

100. Let z be a function of x and y. If $x^{x}y^{y}z^{z} = 2$, then $\frac{\partial z}{\partial x}$ is equal to

(A)
$$\frac{1 + \log x}{1 + \log z}$$

(B)
$$-\frac{1 + \log x}{1 + \log z}$$

(C)
$$-\frac{1 - \log x}{1 + \log z}$$

(D)
$$\frac{1 + \log x}{1 - \log z}$$

101. If
$$f(x) = \cos^{-1} \left[\frac{1 - (\log x)^2}{1 + (\log x)^2} \right]$$
 then $f'(e)$ is equal to
(A) 0
(B) e
(C) $\frac{1}{e}$
(D) 1

102. Solution of the differential equation $\cos x \, dy = y(\sin x - y) dx$, $0 < x < \frac{\pi}{2}$, is

- (A) $\sec x = \tan x + c$
- (B) $y \sec x = \tan x + c$
- (C) $\tan x = (\sec x + c)y$
- (D) $y \tan x = \sec x + c$

103. The solution of the differential equation $x\frac{dy}{dx} = 2y + x^3e^x$, with y(1) = 0, is

- (A) $y = x^2(e^x e)$
- (B) $y = x^3(e e^x)$
- (C) $y = x^2(e e^x)$
- (D) $\tan x = (\sec x + c)y$

104. The integrating factor of the differential equation $(y \log y)dx = (\log y - x)dy$ is

105. If $|\vec{a}| = |\vec{b}| = |\vec{a} + \vec{b}| = 1$, then $|\vec{a} - \vec{b}|$ is equal to (A) 1 (B) $\sqrt{3}$ (C) $\sqrt{2}$ (D) 2

106. The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}, \ \hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is

- (A) 0
- (B) 1 (C) 2
- (C) 2(D) 3

107. If $\vec{a} + \vec{b} + \vec{c} = 0$ and $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{c}| = \sqrt{37}$, then the angle between \vec{a} and \vec{b} is

(A)	$\frac{\pi}{4}$	
(B)	$\frac{\pi}{2}$	120
(C)	$\frac{\pi}{6}$	
(D)	$\frac{\pi}{3}$	

108. The sum of 20 terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$ is

- (A) $220\sqrt{2}$ (B) $210\sqrt{2}$ (C) $300\sqrt{2}$
- (D) $320\sqrt{2}$

109. If $x^2 - 4$ is a factor of $x^4 + ax^3 + x - b$, then

- (A) a = 3, b = -1/4
- (B) a = -1, b = 16
- (C) a = 2/5, b = 16
- (D) a = -1/4, b = 16

110. The coefficient of x^6 in $\{(1+x)^6 + (1+x)^7 + ... + (1+x)^{15}\}$ is

- (A) $^{16}C_9$
- (B) ${}^{16}C_5 {}^{6}C_5$
- (C) ${}^{16}C_6 1$
- (D) ${}^{16}C_6 {}^{6}C_5$

111. The domain of real valued function $f(x) = \sqrt{x-1} + \sqrt{5-x}$ is

- (A) [1, 5]
- (B) [-1, 5]
- (C) [0, 5]
- (D) $[1, \infty]$

112. Total number of solutions to the equation $2^{\cos x} = |\sin x|$ for $x \in [0, 2\pi]$ is

- (A) 0
- (B) 1
- (C) 2
- (D) 4

113. Consider the function $g: N \to N$ defined by $g(x) = x - (-1)^x$ for all $x \in N$. Then g is

- (A) one-to-one and onto
- (B) one-to-one but not onto
- (C) onto but not one-to one
- (D) neither one-to-one nor onto

114. The value of
$$\lim_{x \to -1} \frac{\sqrt{\pi} - \sqrt{\cos^{-1} x}}{\sqrt{x+1}}$$
 is

(A)
$$\frac{1}{\sqrt{2\pi}}$$

(B)
$$\frac{1}{\sqrt{\pi}}$$

(C)
$$\frac{1}{\sqrt{2}}$$

115. If f(9) = 9 and f'(9) = 2, then $\lim_{x \to 9} \frac{3 - \sqrt{f(x)}}{3 - \sqrt{x}}$ is

- (A) 0
- (B) 1
- (C) –1
- (D) 2

116. Value of $\lim_{x \to \frac{\pi}{2}} \frac{\left[\frac{x}{2}\right]}{\log(\sin x)}$ where [x] is the greatest integer function, is

- (A) does not exist
- (B) equal to 1
- (C) equal to -1
- (D) equal to 0

117. The number of discontinuities of the greatest integer function f(x) = [x] for

- $x \in \left[-\frac{7}{2}, 100\right]$ is
- (A) 104
- (B) 103
- (C) 102(D) 101
- 118. The function $f(x) = x \left[x x^2\right]$ is
 - (A) continuous at x = 1
 - (B) discontinuous at x = 1
 - (C) not defined at x = 1
 - (D) not defined at many points

119. The equation of the normal to the curve $y = (1+x)^y + \sin^{-1}(\sin^2 x)$ at x = 0 is

- (A) x + y = 2(B) x + y = 1(C) x - y = 1
- (D) x y = 2

- 120. If the roots of the equation $x^3 ax^2 + 4x 8 = 0$ are real and positive, then the minimum value of *a* is
 - (A) 2
 - (B) $2\sqrt[3]{4}$
 - (C) $3\sqrt[3]{4}$
 - (D) 6
- 121. Suppose that f(0) = -3 and $f'(x) \le 5$ for all values of x. Then the largest value which f(2) can attain is
 - (A) 7
 - (B) 5
 - (C) 3 (D) 2
 - (\mathbf{D}) 2

122. If $\int f(x)dx = f(x)$, then $\int (f(x))^2 dx$ is equal to

- (A) $\frac{1}{2}(f(x))^2$
- (B) $(f(x))^3$
- (C) $\frac{\left(f(x)\right)^3}{3}$
- (D) $(f(x))^2$

123. The solution set of the equation $\begin{bmatrix} 2 & 3 & x \\ 2 & 1 & x^2 \\ 6 & 7 & 3 \end{bmatrix} = 0$ is

- (A) *ø*
- (B) $\{0, 1\}$
- (C) $\{1,-1\}$
- (D) {1,-3}

- 124. The probability that a man will live 10 more years is $\frac{3}{5}$ and the probability that his wife will live 10 more years is $\frac{2}{7}$. Then the probability that none of them will be alive after 10 years is
 - (A) $\frac{2}{5}$ (B) $\frac{2}{7}$ (C) $\frac{3}{5}$ (D) $\frac{5}{7}$
- 125. A committee of five is to be chosen from a group of 9 people. The probability that a certain married couple will either serve together or not at all is
 - (A) $\frac{1}{2}$ (B) $\frac{5}{9}$ (C) $\frac{4}{9}$ (D) $\frac{2}{3}$
- 126. Seven balls are drawn simultaneously from a bag containing 5 white and 6 green balls. The probability of drawing 3 white and 4 green balls is

(A)
$$\frac{7}{11}C_7$$

(B) $\frac{{}^5C_3{}^6C_2}{{}^{11}C_7}$
(C) $\frac{{}^5C_3{}^+{}^6C_2}{{}^{11}C_7}$
(D) $\frac{{}^6C_3{}^5C_4}{{}^{11}C_7}$

In a triangle *ABC*, a = 7, b = 9, and $\sin A = \frac{7}{9}$, then *B* is equal to 127.

- (A) 60°
- (B) 90°
- (C) 45°
- (D) 70°

The digit at the unit place in the number $19^{2005} + 11^{2005} - 9^{2005}$ is 128.

- (A) 0
- (B) 2
- (C) 1
- (D) 4

If \vec{a} and \vec{b} are unit vectors, then the greatest value of $|\vec{a} + \vec{b}|$ 129. is

- (A) 2
- (B) 4
- (C) $2\sqrt{2}$
- (D) $\sqrt{2}$
- Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation such that T(1, 0) = (1, 1)130. and T(0, 1) = (-1, 2). Then T maps the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) into a
 - (A) rectangle
 - (B) trapezium
 - (C) square
 - (D) parallelogram

The order of [7] in $(Z_9, +_9)$ is 131.

- (A) 9
- (B) 6
- (C) 3
- (D) 4

132. Let $A = \{x \in \mathbb{R} : |x - 1| + |x - 2| < 3\}$. Then A is

- (A) open
- (B) close
- (C) both open and closed
- (D) neither open nor closed

133. Let X be the set of all polynomials of degree $k \ge 1$ with integer coefficients. Then X is

- (A) infinite
- (B) uncountable
- (C) countable
- (D) finite

134.	$\int \frac{\cos x}{z^3} dz$ is equal to
	(A) πi (B) $-\pi i$ (C) $2\pi i$ (D) $-2\pi i$
135.	$\int \frac{dz}{z+2}$ is equal to
	(A) $\frac{\pi}{2}$
	(B) πi
	(C) 1
	(D) 0
136.	The characteristic roots of the matrix $\begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ are
	(A) 5, 1, 1 (B) 5, 2, 2

(A) 5, 1, 1
(B) 5, 2, 2
(C) 2, 2, 2
(D) 5, -1, -1

137. The radius of convergence of the series $\sum \frac{1}{n^p} z^n$ is

- (A) 0
- (B) 1
- (C) 2
- (D) ∞

138. The function $f(z) = \log z$ is

- (A) everywhere analytic
- (B) nowhere analytic
- (C) not analytic at z = 1
- (D) not analytic at z = 0

139. The value of the integral $\int_C \frac{z^2 + 3}{z - 2} dz$ where *C* is the circle at centre 0 and of radius

3/4, is

- (A) 0
- (B) 2
- (C) *πi*
- (D) 2*πi*

140. The vector space of dimension 2 is

- (A) $\mathbb{R} \times \mathbb{R}$ over \mathbb{Q}
- (B) $\mathbb{C} \times \mathbb{C}$ over \mathbb{R}
- (C) $\mathbb{C} \times \mathbb{C}$ over \mathbb{Q}
- (D) $\mathbb{Q} \times \mathbb{Q}$ over \mathbb{Q}

141. If $T : \mathbb{R}^2 \to \mathbb{R}$ is the linear transformation for which T((1,1)) = 5, T((0,1)) = -3, then

T((a,b)) is

- (A) 5a 3b
- (B) -3a-5b
- (C) 8a 3b(D) 3a + 8b
- (D) 54 100

142. Let $f : \mathbb{R} \to \mathbb{R}$ be a polynomial and let (x_n) be a sequence of real numbers converging to 2. Then the sequence $(f(x_n))$

- (A) does not converge
- (B) converges to f(2)
- (C) is not bounded
- (D) converges to 2

143. If
$$f(x) = x^2$$
 for all $x \in \mathbb{R}$, then f is

- (A) not continuous on \mathbb{R}
- (B) uniformly continuous on \mathbb{R}
- (C) not uniformly continuous on \mathbb{R}
- (D) None of the above

144.
$$\lim_{x \to 0} \frac{e^{x} - x - 1}{x^{2}} =$$
(A) 0
(B) $\frac{1}{2}$

(C) 2 (D) $\frac{1}{4}$

145. If
$$Z = f(y-z, z-x, x-y)$$
, then $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} + \frac{\partial z}{\partial z}$ i

- (A) 1
- (B) –1
- (C) 2
- (D) 0

146. The conjugate harmonic function of $u(x,u) = x^2 - y^2$ is

- (A) 2xy + c
- (B) 2xy + y
- (C) xy + c
- (D) xy-c

147. The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$ is

- (A) 0
- (B) ∞
- (C) 1
- (D) 4

148. For the function $f(z) = \frac{z - \sin z}{z^3}$, the point z = 0 is

- (A) a pole of order 2
- (B) a removable singularity
- (C) an essential singularity
- (D) an isolated singularity

149. If D is the region bounded by the straight lines y = x, y = 0 and x = 1, then the value

of
$$\iint_{D} e^{\frac{y}{x}} dx dy$$
 is
(A) $\frac{1}{2}(e+1)$
(B) $\frac{1}{2}(e^{2}+1)$
(C) $\frac{1}{2}(e-1)$
(D) $\frac{1}{2}(e^{2}-1)$

150. The particular integral of the equation $(D^2 - 1)y = e^x + \cos 2x$ is

ANSWER KEY									
Subject Name: 612 MATHEMATICS									
SI No.	Key	SI No.	Key	SI No.	Key	SI No.	Key	SI No.	Key
1	А	31	В	61	С	91	А	121	А
2	D	32	А	62	А	92	С	122	А
3	В	33	В	63	А	93	А	123	D
4	А	34	В	64	D	94	D	124	В
5	В	35	А	65	В	95	С	125	С
6	С	36	В	66	D	96	Α	126	В
7	А	37	В	67	С	97	D	127	В
8	В	38	D	68	А	98	С	128	С
9	D	39	В	69	В	99	A	129	С
10	С	40	D	70	В	100	В	130	А
11	D	41	D	71	A	101	C	131	А
12	С	42	В	72	В	102	D	132	А
13	В	43	D	73	D	103	А	133	С
14	А	44	А	74	С	104	С	134	В
15	А	45	С	75	D	105	В	135	D
16	D	46	D	76	A	106	С	136	А
17	D	47	С	77	D	107	D	137	В
18	В	48	В	78	A	108	В	138	D
19	В	49	В	79	А	109	D	139	А
20	В	50	В	80	С	110	А	140	D
21	В	51	D	81	В	111	А	141	С
22	В	52	D	82	С	112	D	142	В
23	Α	53	D	83	С	113	А	143	С
24	D	54	В	84	С	114	А	144	В
25	C	55	В	85	D	115	D	145	D
26	В	56	С	86	А	116	D	146	А
27	C	57	D	87	А	117	В	147	С
28	В	58	В	88	В	118	А	148	В
29	С	59	А	89	С	119	В	149	С
30	D	60	Α	90	В	120	D	150	A