MATHEMATICS PG (FINAL)

1. The inequality $|z-4|<|z-2|$ represents the region given by
(A) $\operatorname{Re}(z)<3$
(B) $\operatorname{Re}(z)>3$
(C) $\operatorname{Re}(z)>0$
(D) $\operatorname{Re}(z)<0$
2. The set of points where the function f given by $f(x)=|2 x-1| \sin x$ is differentiable is
(A) R
(B) $R \backslash\left\{\frac{1}{2}\right\}$
(C) $(0, \infty)$
(D) $(-\infty, \infty)$
3. The radius of convergence R of the series $\sum \frac{\log n}{n} x^{n}$ is equal to
(A) 1
(B) ∞
(C) 2
(D) 3
4. If $z=x+i y$ is a complex number, then $\left|e^{z^{2}}\right|=e^{|z|^{2}}$ is true
(A) for all $z \in \mathbb{C}$
(B) if and only if $y=0$
(C) if and only if $x=0$
(D) only when $z=0$
5. The number of group homomorphisms $\pi: \mathbb{Z} \rightarrow \mathbb{Z}$ is
(A) one
(B) two
(C) even
(D) ∞
6. Which of the following function is not uniformly continuous on $(0,1)$?
(A) $\frac{1}{x^{2}}$
(B) x^{2}
(C) $\frac{\sin x}{x}$
(D) $\sin x$
7. If $f(z)=\cos x(\cosh y+a \sinh y)+i \sin x(\cosh y+b \sinh y)$ satisfies the C-R equation, then
(A) $a=1, b=-1$
(B) $\quad a=i, b=-1$
(C) $a=i, b=-i$
(D) $\quad a=-1, b=-1$
8. If the eigen value of $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$ are $-2,3,6$, then the eigen values of A^{T} are
(A) $\frac{-1}{2}, \frac{1}{3}, \frac{1}{6}$
(B) $-2,3,6$
(C) $2,-3,-6$
(D) $\frac{1}{2}, \frac{-1}{3}, \frac{-1}{6}$
9. $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}\left(\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\ldots+\frac{1}{\sqrt{2 n-1}+\sqrt{2 n+1}}\right)=$
(A) $\frac{1}{\sqrt{2}}$
(B) $\sqrt{2}$
(C) $\sqrt{2}+1$
(D) $\frac{1}{\sqrt{2}+1}$
10. Which one of the following is WRONG?
(A) every Cauchy sequence is convergent
(B) every Cauchy sequence in R is convergent
(C) every Cauchy sequence in R is bounded
(D) a sequence of real numbers is unbounded
11. Given $\bar{x}=25, \bar{y}=22, \sigma_{x}=4, \sigma_{y}=5, \gamma=0.8$. Then the regression line of y on x is
(A) $x+y+3=0$
(B) $x-y+3=0$
(C) $x-y-3=0$
(D) $-x+y+3=0$
12. The derivative of $f(\tan x)$ with respect to $g(\sec x)$ at $x=\frac{\pi}{4}$ where $f^{\prime}(1)=2$ and $g^{\prime}(\sqrt{2})=4$ is
(A) $\frac{1}{\sqrt{3}}$
(B) $\sqrt{3}$
(C) $\sqrt{2}+1$
(D) $\frac{1}{\sqrt{2}}$
13. A metric space is totally bounded if and only if every sequence has a
(A) subsequence
(B) bounded subsequence
(C) Cauchy subsequence
(D) infinite subsequence
14. The order of the coset $\overline{4}$ in the quotient ring $\frac{\mathbb{Z}}{6 \mathbb{Z}}$ is
(A) 6
(B) 5
(C) 3
(D) 1
15. The equation $z \bar{z}+i \bar{z}-i z-3=0$ is
(A) a straight line
(B) a circle
(C) an ellipse
(D) a pair of straight lines
16. Let G be a group and $o(G)<400$. If G has subgroups of order 45 and 75 , then $O(G)$ is equal to
(A) 135
(B) 150
(C) 225
(D) 300
17. Let the matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}i & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}-i & 0 \\ 0 & 0\end{array}\right)$ form a group with respect to matrix multiplication. Then which of the statement about the group is TRUE?
(A) The group has no element of order 4
(B) The group has an element of order 3
(C) The group is non-commutative
(D) There exists a non-identity element which is its own inverse
18. The variance of the first n natural numbers is
(A) $n^{2}-1$
(B) $\frac{n(n+1)}{12}$
(C) $\frac{n^{2}-1}{12}$
(D) $\frac{n(n-1)}{2}$
19. The function $f(z)=x y+i y$ is
(A) nowhere analytic
(B) analytic every where
(C) analytic only at origin
(D) analytic except at the origin
20. With usual notations, for any graph G
(A) $\quad \kappa(G) \leq \lambda(G) \leq \delta(G)$
(B) $\kappa(G) \leq \delta(G) \leq \lambda(G)$
(C) $\lambda(G) \leq \delta(G) \leq \kappa(G)$
(D) $\lambda(G) \leq \kappa(G) \leq \delta(G)$
21. The order of an element ' a ' in a group G is 30 . Then the order of a^{18} is equal to
(A) 3
(B) 5
(C) 6
(D) 8
22. Angle of intersection between two polar curves given by $r=a(1+\sin \theta)$ and $r=a(1-\sin \theta)$ is
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{3}$
(D) 0
23. The value of $\int_{C} \frac{z+2}{z} d z$ where C is the semicircle $z=2 e^{i \theta}, 0 \leq \theta \leq \pi$ is
(A) $-4+4 \pi i$
(B) $-4+2 \pi i$
(C) $-4-2 \pi i$
(D) $-4-4 \pi i$
24. Let $f: G \rightarrow H$ be a group homomorphism with kernel K. If the orders of G, H and K are 75,45 and 15 respectively, then the order of the image $f(G)$ is
(A) 3
(B) 5
(C) 15
(D) 45
25. A noncyclic abelian group all of whose proper subgroups are cyclic is
(A) \mathbb{Z}_{2}
(B) S_{3}
(C) $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$
(D) $\mathbb{Z}_{2} \times S_{4}$
26. What is the envelope of straight lines given by $x \cos b+y \sin b=a \sec b$, where b is the parameter?
(A) $y^{2}+4 a(a-x)=0$
(B) $y+4 a x=0$
(C) $y+4 a(a-x)=0$
(D) $y^{2}=4 a(a-x)$
27. $\int_{-\infty}^{0} x^{5} \cdot e^{x} d x=$
(A) 1
(B) 199
(C) -5 !
(D) 5 !
28. The set $A=\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in \mathbb{R}\right\}$ with usual addition and multiplication of matrices is
(A) a commutative ring but not an integral domain
(B) an integral domain
(C) a field
(D) a non-commutative ring
29. Let $a_{n}=\frac{n!}{n^{n}}$. Then $\left(a_{n}\right)$ converges to
(A) 1
(B) $\frac{1}{e}$
(C) 0
(D) e
30. The value of $\Delta^{10}\left[(1-x)\left(1-1 x^{2}\right)\left(1-3 x^{3}\right)\left(1-4 x^{4}\right)\right]$ is equal to
(A) 24
(B) 10 !
(C) $24!\times 10$!
(D) 24×10 !
31. The length of one arc of the cycloid $x=(\theta-\sin \theta), y=a(1+\cos \theta)$ is
(A) a
(B) $4 a$
(C) $8 a$
(D) $2 a$
32. Let x, y, z be three vectors in a vector space V such that $x+y+z=0$ and $U=\langle x, y\rangle$ and $W=\langle y, z\rangle$. Then
(A) $U \subset W$
(B) $W \subset U$
(C) $U=W$
(D) $U \cap W=\{0\}$
33. Let R be the region bounded by x axis, ordinate $x=2 a$ and the curve $x^{2}=4 a y$. Then $\iint_{R} x y d y d x$
(A) $\frac{a^{4}}{3}$
(B) $\frac{a^{4}}{6}$
(C) $\frac{a^{3}}{3}$
(D) $\frac{a^{2}}{6}$
34. The value of $\frac{2}{5}+\frac{4}{5^{2}}+\frac{2}{5^{3}}+\frac{4}{5^{4}}+\ldots$ is equal to
(A) 1
(B) $\frac{12}{7}$
(C) 0
(D) $\frac{7}{12}$
35. Let T be a linear transformation on a finite dimensional vector space V. Then
(A) $\operatorname{Rank}(T)=\operatorname{Nullity}(T)$
(B) $\operatorname{Rank}(T)=\operatorname{dim}(V)$
(C) $\operatorname{Rank}(T)>\operatorname{dim}(V)$
(D) $\operatorname{Rank}(T) \leq \operatorname{dim}(V)$
36. The value of $\int_{C} \tan z d z$, where C is $|z|=2$, is
(A) $-2 \pi i$
(B) $4 \pi i$
(C) $2 \pi i$
(D) $-4 \pi i$
37. For any group G, let $\operatorname{Aut}(G)$ denote the group of automorphisms of G. Which of the following is TRUE?
(A) If G is finite, then $\operatorname{Aut}(G)$ is finite
(B) If G is cyclic, then $\operatorname{Aut}(G)$ is cyclic
(C) If G is infinite, then $\operatorname{Aut}(G)$ is infinite
(D) If $\operatorname{Aut}(G)$ is isomorphic to $\operatorname{Aut}(H)$, where G and H are two groups, then G is isomorphic to H
38. Let M and N be matrices such that $M N=M$ and $N M=N$. Then $M^{2} N^{2}=$
(A) $M N$
(B) M
(C) N
(D) $-M N$
39. Consider the metric subspace \mathbb{N} of the real line \mathbb{R} with usual metric. Then every
(A) subset of \mathbb{N} is open in \mathbb{N}
(B) singleton set is closed in \mathbb{N}
(C) open set in \mathbb{N} is an open interval
(D) closed set in \mathbb{N} is a closed interval
40. The $p-r$ equation of $r=a \sin \theta$ is
(A) $a p=\sqrt{r}$
(B) $a p=r^{2}$
(C) $a p=-r^{2}$
(D) $a p=\frac{1}{r^{2}}$
41. The series $\sum \frac{(-1)^{n} x^{n}}{n}$ converges if x belongs to
(A) $(-1,1]$
(B) $(1,1]$
(C) $(-1,0]$
(D) $(0,1)$
42. Let A be a 4×4 invertible real matrix. Which of the following is NOT necessarily TRUE?
(A) The rows of A form a basis of \mathbb{R}^{4}
(B) Null space of A contains only the 0 vector
(C) A has 4 distinct eigen values
(D) Image of the linear transformations $x \rightarrow A x$ on \mathbb{R}^{4} is \mathbb{R}^{4}
43. $\lim _{n \rightarrow \infty}\left(\frac{1}{\sqrt{2 n^{2}+1}}+\frac{1}{\sqrt{2 n^{2}+2}}+\ldots+\frac{1}{\sqrt{2 n^{2}+n}}\right)=$
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) 1
(D) ∞
44. The order of the permutation $\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 5 & 4 & 1 & 3 & 2\end{array}\right)$ in the symmetric group S_{12} is
(A) 2
(B) 3
(C) 4
(D) 12
45. The value of $\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} d z$, where C is $|z|=4$ and $f(z)=\frac{\left(z^{2}+1\right)}{\left(z^{2}+2 z+a\right)^{2}}$ is
(A) -2
(B) 0
(C) 2
(D) 1
46. A solution of the differential equation $\frac{d y}{d x}=e^{x+y}+x^{2} e^{y}$ is
(A) $e^{x}-e^{y}+\frac{y^{3}}{3}=C$
(B) $e^{x}+e^{y}+\frac{x^{3}}{3}=C$
(C) $e^{x}+e^{-y}+\frac{x^{3}}{3}=C$
(D) $e^{x}+e^{-y}+\frac{y^{3}}{3}=C$
47. If $2 y+3 x-31=0$ represents the regression line of y on x, the standard deviation of x is 5 and the correlation coefficient is -0.5 . Then the standard deviation of y is
(A) $\sqrt{15}$
(B) 15
(C) $\frac{15}{2}$
(D) $\frac{2}{15}$
48. The order of the group $U(20)$ where $U(n)$ is the group of units of \mathbb{Z}_{n}, is
(A) 6
(B) 8
(C) 10
(D) 16
49. Which of the following matrix has the same row space as the matrix $\left[\begin{array}{lll}4 & 8 & 4 \\ 3 & 6 & 1 \\ 2 & 4 & 0\end{array}\right]$?
(A) $\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(C) $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
50. If G is a (p, q)-planar graph in which every face is an n-cycle, then q is equal to
(A) $n(p-2)$
(B) $\frac{n}{n-2}$
(C) $\frac{n(p-2)}{n-2}$
(D) $\frac{n p-2}{n-2}$
51. Let $M(\mathbb{R})$ be the ring of $n \times n$ matrices over \mathbb{R}. Which of the following is TRUE for every $n \geq 2$?
(A) There exist matrices $A, B \in M_{n}(\mathbb{R})$ such that $A B-B A=I_{n}$, where I_{n} denotes the identity $n \times n$ matrix
(B) If $A, B \in M_{n}(\mathbb{R})$ and $A B=B A$, then A is diagonalizable over \mathbb{R} and if and only if B is diagonalizable over \mathbb{R}
(C) $A B$ and $B A$ have same minimal polynomial
(D) If $A, B \in M_{n}(\mathbb{R})$ and $A B$ and $B A$ have same eigen values in \mathbb{R}
52. The general solution of the given differential equation $(8 x+7) \frac{d y}{d x}+2 y=x$ is
(A) $c_{1}\left(\frac{1}{8 x+7}\right)^{\frac{1}{4}}+\frac{8 x+7}{40}-\frac{5}{16}$
(B) $c_{1}\left(\frac{1}{8 x+7}\right)^{\frac{1}{4}}+\frac{8 x+7}{80}-\frac{7}{16}$
(C) $c_{1}\left(\frac{1}{8 x+7}\right)^{\frac{1}{4}}+\frac{8 x+7}{40}-\frac{7}{8}$
(D) $c_{1}\left(\frac{1}{8 x+7}\right)^{\frac{1}{4}}+\frac{8 x+7}{40}-\frac{7}{16}$
53. The image of the circle $|z-3 i|=3$ under the map $w=\frac{1}{z}$ is
(A) the real axis in the w-plane
(B) the circle passing through origin
(C) the straight line in the w-plane
(D) a straight line in the w-plane passing through origin
54. The series $\sum_{n=1}^{\infty} \frac{(n+1) x^{n}}{n^{3}} ; x>0$, is
(A) convergent if $x>1$
(B) divergent if $x<1$
(C) convergent if $x \leq 1$ and divergent if $x>1$
(D) convergent if $x>1$ and divergent if $x<1$
55. The automorphism group of \mathbb{Z} is isomorphic to
(A) S_{3}
(B) \mathbb{Z}_{3}
(C) \mathbb{Z}_{2}
(D) \mathbb{Z}
56. The sequence $\left\{s_{n}\right\}$ defined by $s_{n+1}=\sqrt{7+s_{n}}, s_{1}=\sqrt{7}$ converges to a
(A) positive root of $x^{2}-x-7=0$
(B) negative root of $x^{2}-x-7=0$
(C) positive root of $x^{2}+x-7=0$
(D) negative root of $x^{2}+x-7=0$
57. The radius of the curvature of $y=\sin x$ at $x=\frac{\pi}{2}$ is
(A) -1
(B) 1
(C) 0
(D) $\frac{\pi}{2}$
58. Suppose φ is a non-constant and a non-identity group homomorphism from the group of S_{4} to \mathbb{Z}_{2}. Then $\operatorname{ker} \varphi$ is
(A) S_{3}
(B) \mathbb{Z}_{3}
(C) \mathbb{Z}_{4}
(D) A_{4}
59. If a, b be two real numbers with $a>0$ and $b>0$, then there exists a positive integer n such that
(A) $n a>b$
(B) $n a<b$
(C) $n a=b$
(D) $n a \neq b$
60. If $0<a<b$, then $\lim _{n \rightarrow \infty}\left(\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}\right)$ is equal to
(A) 0
(B) a
(C) b
(D) a / b
61. The vector $\frac{\vec{r}}{|\vec{r}|^{3}}$ is
(A) only solenoidal
(B) only irrotational
(C) both solenoidal and irrotational
(D) neither solenoidal nor irrotational
62. The bilinear transformation which takes the points $z=-1,0,2$ into the points $w=0, i,-i$ respectively is
(A) $w=i \frac{z-2}{2-3 i}$
(B) $w=i \frac{z+2}{2-3 i}$
(C) $w=i \frac{z+2}{2+3 i}$
(D) $w=i \frac{z-2}{2+3 i}$
63. Let V be the set of all polynomials of degree $\leq n$ in $\mathbb{R}[x]$. Then the dimension of V is
(A) 1
(B) n
(C) $n-1$
(D) $n+1$
64. If $f(x)=a b^{c x}$, then $\Delta f(x)$ is equal to
(A) $a b^{c x}\left(b^{c h}-1\right)$
(B) $a b^{c x}\left(b^{h}-1\right)$
(C) $a b^{c x}\left(a^{c h}-1\right)$
(D) $a b^{c x}\left(a^{h}-1\right)$
65. Area enclosed by the curve $\pi\left[4(x-\sqrt{2})^{2}+y^{2}\right]=8$ is
(A) 16
(B) 8
(C) 4
(D) 2
66. If $\vec{p}=i-2 j+3 k$ and $\vec{q}=3 i+3 j+k$, then $(\vec{p}-\vec{q})^{2}$ is equal to
(A) $\vec{p}-\vec{q}$
(B) $\vec{p}+\vec{q}$
(C) $|\vec{p}|^{2}-|\vec{q}|^{2}$
(D) $(\vec{p}+\vec{q})^{2}$
67. The value of the line integral $\int_{C}\left(2 x y^{2} d x+2 x^{2} y d y+d z\right)$ along a path joining the origin and the point $(1,1,1)$ is
(A) 0
(B) 2
(C) 4
(D) 6
68. Automorphism group of the group $\left(\mathbb{Z}_{8},+_{8}\right)$ is isomorphic to
(A) Klein's 4-group
(B) \mathbb{Z}_{3}
(C) \mathbb{Z}_{4}
(D) \mathbb{Z}_{2}
69. The residue of $f(z)=\frac{z e^{z}}{(z-1)^{3}}$ at $z=1$ is
(A) $\frac{e}{2}$
(B) $\frac{3 e}{2}$
(C) $\frac{3}{2}$
(D) e
70. The largest negative integer which satisfies the inequality $\frac{x^{2}-1}{(x-2)(x-3)}>0$ is
(A) -4
(B) -3
(C) -1
(D) -2
71. If the roots of the equation $9 x^{2}+4 a x+4=0$ are imaginary, then
(A) $a \in(-3,3)$
(B) $\quad a \in(-\infty,-3) \cup(3, \infty)$
(C) $a \in(2,3)$
(D) $a \in(3, \infty)$
72. The number of maximal ideals in $\left(\mathbb{Z}_{8},+_{8},{ }_{8}\right)$ is
(A) 1
(B) 6
(C) 2
(D) 4
73. The characteristic roots of $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$ are
(A) $-1,-1$
(B) 1,1
(C) $\cos \theta \pm \sin \theta$
(D) $\cos \theta \pm i \sin \theta$
74. Every group of order 33 is
(A) abelian but not cyclic
(B) cyclic but not abelian
(C) non-abelian
(D) cyclic
75. $\lim _{x \rightarrow 0}\left[\left(3 x+\frac{1}{x}\right)^{2}-\left(2 x-\frac{1}{x}\right)^{2}\right]=$
(A) 36
(B) 10
(C) 3
(D) 2
76. The number of points of intersection of $y=x$ and $y=k e^{x}$, where $k \leq 0$, is
(A) ∞
(B) k
(C) 2
(D) 1
77. The value of $\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1}$ is
(A) $\frac{1}{2}$
(B) 1
(C) 0
(D) -1
78. The mean of four numbers is 37 . The mean of the smallest three of them is 34 . If the range of the data is 15 , then the mean of the largest three is
(A) 41
(B) 38
(C) 40
(D) 39
79. If $u(x, y)=a x^{2}-y^{2}+x y$ is harmonic, then
(A) $a=-1$
(B) $a=1$
(C) $a=0$
(D) $a=2$
80. $\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+2^{\frac{1}{2}}+3^{\frac{1}{3}}+\ldots+n^{\frac{1}{n}}\right)=$
(A) 0
(B) 2
(C) 4
(D) 1
81. Let $f:(-1,1) \rightarrow \mathbb{R}$ be a differentiable function with $f(0)=-1$ and $f^{\prime}(0)=1$. Let $g(x)=[f(2 f(x)+2)]^{2}$. Then $g^{\prime}(0)=$
(A) $\quad-4$
(B) 0
(C) 2
(D) 4
82. The number of vertices in a polyhedron which has 30 edges on 12 faces, is
(A) 12
(B) 15
(C) 20
(D) 24
83. The function $f(x)=\tan x-x$
(A) increases in $(-\infty, \infty)$
(B) decreases in $(-\infty, \infty)$
(C) never decreases
(D) never increases
84. The function $f(z)=|z|^{2}$ is differentiable
(A) in the unit disc $|z|=1$
(B) at $z=0$
(C) whole complex plane
(D) in the straight line $z+\bar{z}=4$
85. The greatest value of the function $f(x)=x e^{-x}$ in the interval $[0, \infty)$ is
(A) e
(B) $\frac{1}{e}$
(C) 0
(D) ∞
86. The moment generating function of a standard normal variate is
(A) $e^{\mu t+\frac{t^{2} \sigma^{2}}{2}}$
(B) $e^{\frac{\mu t}{2}}$
(C) $e^{\frac{t}{2}}$
(D) $e^{t^{2}}$
87. $\int \tan \left(\sin ^{-1} x\right) d x=$
(A) $-\sqrt{1-x^{2}}+c$
(B) $-\sqrt{1+x^{2}}+c$
(C) $\sqrt{x^{2}}+c$
(D) $-\sqrt{x^{2}}+c$
88. In $V_{3}(R)$, let $S=L\{(1,1,1)\}$ and $T=L\{(-1,-1,-1)\}$. Then $\operatorname{dim}(S \cap T)$ is
(A) 2
(B) 1
(C) 0
(D) 3
89. The zero of $f(z)=z^{2} \sin z$ at $z=0$ is of order
(A) >3
(B) 2
(C) 3
(D) 1
90. Area bounded by the curve $y=\log _{e} x, x=0, y \leq 0$ and x-axis is
(A) 0
(B) 1
(C) 2
(D) ∞
91. The number of roots of the equation $|x|=x^{2}+x-4$ is
(A) 0
(B) 1
(C) 2
(D) 4
92. Particular integral of the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}+4 x \frac{d y}{d x}+2 y=e^{x}$ is
(A) $x^{-2} e^{x}$
(B) $x^{2} e^{x}$
(C) $x^{-2} e^{-x}$
(D) $x^{2} e^{-x}$
93. Let $f(x)=\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \cdot\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \cdot\left(\frac{x^{c}}{x^{a}}\right)^{c+a}$. Then $\frac{d y}{d x}=$
(A) $x^{a b c}$
(B) $x^{a=b+c}$
(C) 1
(D) 0
94. The number of points of discontinuity of the function $f(x)=\frac{1}{\log |x|}$ is
(A) 3
(B) 2
(C) 1
(D) 0
95. The equations of common tangents to $y^{2}=4 a x$ and $(x+a)^{2}+y^{2}=a^{2}$ are
(A) $y=\left(\frac{x}{\sqrt{3}}+a\right)$
(B) $y= \pm\left(\sqrt{3}+\frac{a}{\sqrt{3}}\right)$
(C) $y= \pm\left(\frac{x}{\sqrt{3}}+\sqrt{3} a\right)$
(D) $y=\left(\sqrt{3}-\frac{a}{\sqrt{3}}\right)$
96. If M is a discrete metric space, then the open ball $B(a, 2)$ is
(A) $\{a\}$
(B) M
(C) ϕ
(D) $\{2\}$
97. The point of intersection of the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+3}{4}$ with plane $2 x+4 y-z+1=0$ is
(A) $\left(\frac{10}{3}, \frac{3}{2}, \frac{5}{3}\right)$
(B) $\left(\frac{10}{3}, \frac{-3}{2}, \frac{5}{3}\right)$
(C) $\left(\frac{10}{3}, \frac{5}{3}, \frac{3}{2}\right)$
(D) $\left(\frac{10}{3}, \frac{-3}{2}, \frac{-5}{3}\right)$
98. The value of $\Delta \log f(x)$ is
(A) $\log [1-\Delta f(x)]$
(B) $\log [1+\Delta f(x)]$
(C) $\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$
(D) $\log \left[1-\frac{\Delta f(x)}{f(x)}\right]$
99. The values of k for which the number of distinct common normals of $(x-2)^{2}=4(y-3)$ and $x^{2}+y^{2}-2 x-k u-c=0,(c>0)$ is 3 , lie in
(A) $(2, \infty)$
(B) $(4, \infty)$
(C) $(2,4)$
(D) $(10, \infty)$
100. The value of $\int_{|z|=2} \frac{z}{\left(9-z^{2}\right)(z+i)} d z$ is
(A) π
(B) $\frac{\pi}{2}$
(C) $\frac{\pi}{5}$
(D) $\frac{\pi}{3}$
101. A point through which three normals of parabola $y^{2}=4 a x$ are passing, two of which are making angles α and β with x-axis, where $\tan \alpha \tan \beta=2$, lies on the curve
(A) $y\left(y^{2}-2 a x\right)=0$
(B) $y\left(y^{2}+2 a x\right)=0$
(C) $y\left(y^{2}-4 a x\right)=0$
(D) $y\left(y^{2}-a x\right)=0$
102. The eccentricity of an ellipse whose pair of conjugate diameters are $y=x$ and $3 y=-2 x$, is
(A) $\frac{2}{3}$
(B) $\frac{1}{\sqrt{3}}$
(C) $\frac{1}{3}$
(D) $\frac{2}{\sqrt{3}}$
103. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then
(A) $a>0, b>0$
(B) $a>0, b<0$
(C) $a=0, b \neq 0$
(D) $a \neq 0, b=0$
104. If g is the inverse of f and $f^{\prime}(x)=\frac{1}{1+x^{3}}$, then $g^{\prime}(x)$ is equal to
(A) $1+[g(x)]^{3}$
(B) $\frac{-1}{2 x^{2}}$
(C) $\frac{1}{2\left(1+x^{2}\right)}$
(D) $2\left(1+x^{2}\right)$
105. The series $\frac{1}{3} x+\frac{1 \cdot 2}{3 \cdot 5} x^{2}+\frac{1 \cdot 2 \cdot 3}{3 \cdot 5 \cdot 7} x^{3}+\ldots$ converges, if
(A) $x<2$
(B) $x=2$
(C) $x=0$
(D) $x>0$
106. If $f(x)=x^{n}$, then the value of $f(1)-\frac{f^{\prime}(1)}{1!}+\frac{f^{\prime \prime}(1)}{2!}-\frac{f^{\prime \prime \prime}(1)}{3!}+\ldots+(-1)^{n} \frac{f^{n}(1)}{n!}$ is
(A) 2^{n}
(B) 2^{n-1}
(C) 0
(D) 1
107. If the function y defined by the equation $x y-\log y=1$ satisfies $x\left(y y^{\prime \prime}+y^{\prime 2}\right)-y^{\prime \prime}+k y y^{\prime}=0$, then the value of k is
(A) -3
(B) 3
(C) 1
(D) -1
108. Let f be a differentiable function satisfying $f(x)+f(y)+f(z)+f(x) f(y) f(z)=14$ for all $x, y, z \in R$. Then
(A) $f^{\prime}(x)<0$ for all $x \in R$
(B) $f^{\prime}(x)>0$ for all $x \in R$
(C) $f^{\prime}(x) \neq 0$ for all $x \in R$
(D) $f^{\prime}(x)=0$ for all $x \in R$
109. $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\cot x\right)$ is equal to
(A) -1
(B) 0
(C) 1
(D) ∞
110. The angle between the plane $2 x-y+z=6$ and $x+y+2 z=7$ is
(A) 45°
(B) 90°
(C) 30°
(D) 60°
111. If $f(x)=|x|^{|\tan x|}$, then $f^{\prime}\left(\frac{-\pi}{6}\right)$ is equal to
(A) $\left(\frac{\pi}{6}\right)^{1 / \sqrt{3}}\left\{\frac{2 \sqrt{3}}{\pi}-\frac{4}{3} \log \frac{6}{\pi}\right\}$
(B) $\left(\frac{\pi}{6}\right)^{1 / \sqrt{3}}\left\{\frac{-2 \sqrt{3}}{\pi}+\frac{4}{3} \log \frac{6}{\pi}\right\}$
(C) $\left(\frac{\pi}{6}\right)^{1 / \sqrt{3}}\left\{\frac{2 \sqrt{3}}{\pi}+\frac{4}{3} \log \frac{6}{\pi}\right\}$
(D) $\left(\frac{\pi}{6}\right)^{1 / \sqrt{3}}\left\{\frac{-2 \sqrt{3}}{\pi}-\frac{4}{3} \log \frac{6}{\pi}\right\}$
112. $\lim _{n \rightarrow \infty} \prod_{r=3}^{n} \frac{r^{3}-8}{r^{3}+8}=$
(A) $\frac{7}{2}$
(B) $\frac{2}{7}$
(C) 1
(D) -1
113. For \mathbb{R} with usual metric, interior of \mathbb{Q} is
(A) $\mathbb{R} \backslash \mathbb{Q}$
(B) \mathbb{R}
(C) set of irrationals
(D) the empty set
114. In a Poisson distribution, if $P(x=0)=k$, then the variance is
(A) e^{k}
(B) e^{-k}
(C) $\log _{e} k$
(D) $\log _{e}\left(\frac{1}{k}\right)$
115. If $f(x)=\left\{\begin{array}{l}a x^{2}+1, x \leq 1 \\ x^{2}+a x+b, x>1\end{array}\right.$ is differentiable at $x=1$, then
(A) $a=1, b=1$
(B) $a=1, b=0$
(C) $a=2, b=0$
(D) $a=2, b=1$
116. $\lim _{x \rightarrow \infty}\left(\frac{2 x^{2}+3}{2 x^{2}+5}\right)^{8 x^{2}+3}=$
(A) e^{8}
(B) e^{-8}
(C) e^{4}
(D) e^{-4}
117. Let $f^{\prime}(\sin x)<0$ and $f^{\prime \prime}(\sin x)>0$ for all $x \in\left(0, \frac{\pi}{2}\right)$ and $g(x)=f(\sin x)+f(\cos x)$, then $g(x)$ is decreasing in
(A) $\left(0, \frac{\pi}{4}\right)$
(B) $\left(0, \frac{\pi}{2}\right)$
(C) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$
(D) $\left(\frac{\pi}{6}, \frac{\pi}{2}\right)$
118. $\left|\int_{10}^{19} \frac{\sin x d x}{1+x^{8}}\right|$ is less than
(A) 10^{-7}
(B) 10^{-11}
(C) 10^{-10}
(D) 10^{-9}
119. In a discrete metric space, the only connected subsets are
(A) finite sets
(B) whole sets
(C) singleton sets
(D) all subsets
120. If the ordinate $x=a$ divides the area bounded by x-axis, part of the curve $y=1+\frac{8}{x^{2}}$ and the ordinate $x=2, x=4$ into two equal parts, then ' a ' is equal to
(A) $\sqrt{2}$
(B) $2 \sqrt{2}$
(C) $3 \sqrt{2}$
(D) 2
121. The centre of curvature of $y=x^{2}$ at origin is
(A) $(0,0)$
(B) $\left(0, \frac{1}{2}\right)$
(C) $(-1,0)$
(D) $\left(0, \frac{1}{4}\right)$
122. A curve pass through the point $(0,1)$ and the gradient at (x, y) on it is $y(x y-1)$. The equation of the curve is
(A) $y(x-1)=1$
(B) $y(x+1)=1$
(C) $x(y-1)=1$
(D) $x(y+1)=1$
123. Let $S=\{(x, y, 0) / x, y \in \mathbb{R}\} \subseteq V_{3}(\mathbb{R})$ with standard inner product. Then S^{\perp} is equal to
(A) $\{(x, y, z): x, y, z \in \mathbb{R}\}$
(B) $\{(0, y, z): y, z \in \mathbb{R}\}$
(C) $\{(0,0,0)\}$
(D) $\{(0,0, z): z \in \mathbb{R}\}$
124. A ray of light coming from origin after reflection at the point $P(x, y)$ of any curve becomes parallel to x-axis. The equation of the curve may be
(A) $y^{2}=x$
(B) $y^{2}=2 x+1$
(C) $y^{2}=4 x$
(D) $y^{2}=4 x+1$
125. The eccentricity of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$ is changed at the rate of 0.1 units $/ s$. The time at which it will touch the auxiliary circle is
(A) $2 s$
(B) $3 s$
(C) 5 s
(D) $6 s$
126. The general solution of the differential equation $(2 x-y+1) d x+(2 y-x+1) d y=0$ is
(A) $x^{2}+y^{2}+x y-x+y=c$
(B) $x^{2}+y^{2}-x y+x+y=c$
(C) $x^{2}-y^{2}+2 x y-x+y=c$
(D) $x^{2}-y^{2}-2 x y+x-y=c$
127. The value of $\Delta \tan ^{-1}\left(\frac{n-1}{n}\right)$ with $h=1$ is equal to
(A) $\tan ^{-1}\left(\frac{1}{2 n^{2}}\right)$
(B) $\tan ^{-1}\left(\frac{1}{2 n}\right)$
(C) $\tan ^{-1}\left(\frac{1}{n^{2}}\right)$
(D) $\tan ^{-1}\left(\frac{1}{n}\right)$
128. The radius of the circle given by $|\vec{r}|=5$ and $\vec{r} \cdot(\vec{i}+\vec{j}+\vec{k})=3 \sqrt{3}$ is
(A) 1
(B) 2
(C) 3
(D) 4
129. Consider the set $X=\{z \in \mathbb{C}:|z|>1\} \cup\{i\}$. Then X in \mathbb{C} is
(A) open but not closed
(B) closed but not open
(C) neither open nor closed
(D) both open and closed
130. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous map and $A=\{x \in \mathbb{R}: f(x)=0\}$. Then A is
(A) closed
(B) compact
(C) bounded
(D) open
131. The integral $\int_{|z|=2} \frac{\cos z}{z^{3}} d z$ equals
(A) πi
(B) $-\pi i$
(C) $2 \pi i$
(D) $-2 \pi i$
132. In \mathbb{R} with usual metric, closure of \mathbb{Z} is
(A) \mathbb{Z}
(B) ϕ
(C) \mathbb{R}
(D) \mathbb{Q}
133. Let $f(z)=\frac{1}{z}$. Then f is
(A) not continuous on $\{z \in C: 0<|z| \leq 1\}$
(B) continuous but not uniformly continuous on $\{z \in C: 0<|z| \leq 1\}$
(C) uniformly continuous on $\{z \in C: 0<|z| \leq 1\}$
(D) no where continuous
134. The set of discontinuities of function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=[x]$ ($[x]$ is the integral part of x), is
(A) \mathbb{N}
(B) ϕ
(C) \mathbb{Q}
(D) \mathbb{Z}
135. The value of $\int \frac{d z}{z+2}$, where $C:|z|=1$, is
(A) 0
(B) $-\pi / 2$
(C) $\pi / 2$
(D) $2 \pi i$
136. Let $A=\left(\begin{array}{cc}0 & \alpha \\ \beta & 0\end{array}\right)$ be such that $A^{3}+A=0$. Then
(A) $\alpha \beta=2$
(B) $\alpha \beta \neq 1$
(C) $\alpha \beta=-1$
(D) $\alpha \beta \neq 0$
137. The angle between the radius vector and the tangent to the curve $r=a(1-\cos \theta)$ at $\theta=\frac{\pi}{6}$
(A) $\frac{\pi}{12}$
(B) $\frac{\pi}{6}$
(C) $\frac{\pi}{4}$
(D) $\frac{\pi}{2}$
138. Let V be the set of all 3×3 real matrices such that $A=\left(a_{i j}\right)$ with $a_{11}+a_{22}+a_{33}=0$. Then dimension of V as a real vector space is
(A) 3
(B) 7
(C) 8
(D) 9
139. The dimension of the subspace of R^{3} spanned by $(-3,0,1),(1,2,1)$ and $(3,0,-1)$ is
(A) 3
(B) 2
(C) 1
(D) 0
140. The tangent at points on the curve $x y=20$ which are parallel to the line $5 x+y=1$, are
(A) $(2,10),(2,-10)$
(B) $(2,10),(-2,-10)$
(C) $(10,2),(10,2)$
(D) $(3,4),(4,3)$
141. The function $f(x)=\left\{\begin{array}{ll}1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$ is
(A) continuous everywhere
(B) continuous nowhere
(C) continuous at $x=1$
(D) continuous at $x=0$
142. In $V_{3}(\mathbb{R})$, let $v_{1}=(1,0,1), v_{2}(1,3,1), v_{3}=(3,2,1)$. Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ be the orthonormal basis obtained from $\left\{v_{1}, v_{2}, v_{3}\right\}$ for $V_{3}(\mathbb{R})$. Then w_{2} is
(A) $(0,3,0)$
(B) $(3,3,0)$
(C) $(1,3,1)$
(D) $(1,0,1)$
143. The series $g(z)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin n^{2} \pi z$ is
(A) not absolutely convergent
(B) uniformly convergent
(C) convergent but not uniformly convergent
(D) no where convergent
144. $\lim _{x \rightarrow 0+} \log \left(\frac{1+x}{1-x}\right)^{\frac{1}{x}}$
(A) exists and is equal to 0
(B) exists and is equal to 1
(C) exists and is equal to 2
(D) does not exist
145. If $f(x)=1+\frac{3}{2+\sin ^{2} x}$, then
(A) f is periodic with period $\frac{\pi}{2}$
(B) f is periodic with period π
(C) f is periodic with period 2π
(D) f is not periodic
146. The set of linearly independent solutions of the differential equation $\frac{d^{4} y}{d x^{4}}-\frac{d^{2} y}{d x^{2}}=0$ is
(A) $\left\{1, x, e^{x}, e^{-x}\right\}$
(B) $\left\{1, x, e^{-x}, x e^{-x}\right\}$
(C) $\left\{1, x, e^{x}, x e^{x}\right\}$
(D) $\left\{1, x, e^{x}, x e^{-x}\right\}$
147. Which of the following function is uniformly continuous?
(A) $f(x)=\sin ^{2} x, x \in \mathbb{R}$
(B) $f(x)=\frac{1}{x}, x \in(0,1)$
(C) $f(x)=x^{2}, x \in \mathbb{R}$
(D) $f(x)=x^{2}+\frac{1}{x}, x \in \mathbb{R}$
148. The orthogonal trajectories of the rectangular hyperbola $x y=a^{2}$ is
(A) $x^{2}+y^{2}=c^{2}$
(B) $x^{2}=c^{2} y^{2}$
(C) $x=c^{2} y^{2}$
(D) $x^{2}-y^{2}=c^{2}$
149. The probability that a single toss of a die will result in a number less than 4 if the toss resulted in an odd number, is
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) 1
(D) $\frac{1}{2}$
150. If $A=\left(\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right)$, the sum and product of the eigen values of A are
(A) 32,12
(B) 12, -32
(C) 12, 32
(D) $-12,-32$

FINAL ANSWER KEY

Subject Name: MATHEMATICS

SI No.	Key								
1	B	31	C	61	A	91	C	121	B
2	B	32	C	62	B	92	A	122	B
3	A	33	A	63	D	93	D	123	D
4	B	34	D	64	A	94	A	124	B
5	D	35	D	65	C	95	C	125	C
6	A	36	D	66	D	96	B	126	B
7	D	37	A	67	B	97	B	127	A
8	B	38	A	68	A	98	C	128	D
9	A	39	B	69	B	99	D	129	C
10	A	40	B	70	D	100	C	130	A
11	D	41	A	71	A	101	C	131	B
12	D	42	C	72	A	102	B	132	A
13	C	43	B	73	C	103	B	133	B
14	C	44	C	74	D	104	A	134	D
15	B	45	A	75	B	105	A	135	A
16	C	46	C	76	D	106	C	136	C
17	D	47	B	77	A	107	B	137	A
18	C	48	B	78	D	108	D	138	C
19	A	49	A	79	B	109	B	139	B
20	A	50	C	80	D	110	D	140	B
21	B	51	D	81	A	111	B	141	B
22	B	52	B	82	C	112	B	142	A
23	B	53	C	83	C	113	D	143	B
24	B	54	C	84	B	114	D	144	C
25	C	55	C	85	B	115	C	145	B
26	D	56	A	86	D	116	B	146	A
27	C	57	A	87	A	117	A	147	A
28	A	58	D	88	B	118	A	148	D
29	D	59	A	89	C	119	C	149	B
30	D	60	C	90	B	120	B	150	C

