612-MATHEMATICS (FINAL)

1. The sequence
$$\{x_n\}$$
 where $x_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n-1}$ is

- (A) increasing but not bounded
- (B) decreasing and bounded
- (C) increasing and bounded
- (D) decreasing but not bounded
- 2. If *A* and *B* are sets such that O(A) = 5 and O(B) = 3, then the number of binary relations from *A* to *B* is
 - (A) 2⁸
 - (B) 2⁹
 - (C) 2¹⁵
 - (D) 2²⁴
- 3. Let $R = \{(a, a), (b, c), (a, b)\}$ be a relation on the set $\{a, b, c\}$. The minimum number of elements that should be added to *R* so that it becomes antisymmetric are
 - (A) 2
 - (B) 3
 - (C) 1
 - (D) 0

4. If C is a circle |z|=1, then $\int_C \overline{z} dz$ is

- (A) πi
- (B) 2*πi*
- (C) 0
- (D) None of the above
- 5. The n^{th} roots of unity under multiplication form a
 - (A) monoid
 - (B) groupoid
 - (C) semigroup
 - (D) abelian group

6. The Legendre equation is given by

(A)
$$x^2 y'' + xy' + (x^2 - n^2) y = 0$$

- (B) $(1-x^2)y''+2xy'-n(n+1)y=0$
- (C) $(1-x^2)y''-2xy'+n(n+1)y=0$
- (D) $(1-x^2)y''-xy'+(x^2-n^2)y=0$

7. The set of rational numbers of the form $\frac{m}{2^n}$ (*m*, *n* are integers) is a group under

- (A) addition
- (B) subtraction
- (C) multiplication
- (D) division

8. The generators of the group
$$G = \{a, a^2, a^3, a^4 = e\}$$
 are

- (A) a only
- (B) $a \text{ and } a^2$
- (C) $a \text{ and } a^3$
- (D) a and a^4

9. The solution of $\frac{dy}{dx} = y^2$, y(0) = 1, exists for all

- (A) $x \in (-\infty, 1)$
- (B) $x \in [0, a]$ where a > 1
- (C) $x \in (-\infty, \infty)$
- (D) $x \in [1, a]$ where a > 1

10. The value $\int_C \overline{F} d\overline{r}$, where $\overline{F} = x^2 y^2 \overline{i} + y\overline{j}$ and C is $y^2 = 4x$ from (0, 0) to (4, 4), is

- (A) 64
- (B) -128
- (C) 128
- (D) 264

11. The directional derivative of the function $f = x^2 - y^2 + 2z^2$ at the point P(1, 2, 3) in the direction of the line PQ where Q has the coordinates (5, 0, 4) is

(A)
$$\frac{28}{\sqrt{15}}$$

(B) $\sqrt{\frac{13}{21}}$
(C) $\frac{4}{\sqrt{15}}$
(D) $\frac{28}{\sqrt{21}}$

12. If $\{\alpha, \beta\}$ is an orthonormal set, then the distance between α and β is

- (A) $\sqrt{3}$
- (B) 0
- (C) 3
- (D) $\sqrt{2}$

13. The function $f(z) = z^2$ is differentiable

- (A) nowhere
- (B) everywhere
- (C) only at 0
- (D) only in |z| < 1
- 14. The equation of the plane passing through the points (-1, 1, 1) and (1, -1, 1) and perpendicular to the plane x + 2y + 2z = 7 is
 - (A) 4x + 2y 3z + 5 = 0
 - (B) 4x + 4y 6z + 5 = 0
 - (C) 2x + 2y 3z + 3=0
 - (D) 2x + 2y 6z + 3=0
- 15. The total number of subgroups of Z contained in 20Z is
 - (A) 6
 - (B) 2
 - (C) infinite
 - (D) 18

- 16. Which of the following statement is true?
 - (A) (Q, +) is a cyclic group
 - (B) Every abelian group is cyclic
 - (C) Every group of order < 4 is cyclic
 - (D) Every element of a cyclic group generates the group
- 17. The equation of a right circular cone with vertex at origin 0, axis the *x*-axis and semi-vertical angle α is
 - (A) $x^2 + y^2 = x^2 \operatorname{sec} h^2 \alpha$
 - (B) $y^2 + z^2 = x^2 \tanh^2 \alpha$
 - (C) $y^2 + z^2 = x^2 \tan^2 \alpha$
 - (D) $x^2 + y^2 = x^2 \tanh^2 \alpha$
- 18. Let *R* be the ring of all real valued functions defined on *R*, under pointwise addition and multiplication. Which of the following subsets of *R* is not a subring?
 - (A) Set of all continuous functions
 - (B) Set of all polynomial functions
 - (C) Set of all functions which are zero at finitely many points together with the zero function
 - (D) Set of all functions which are zero at countable number of points
- 19. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that T(1, 0) = (1, 1) and T(0, 1) = (-1, 2). Then *T* maps the square with vertices (0, 0), (1, 0), (1, 1) and (0, 1) into a
 - (A) rectangle
 - (B) trapezium
 - (C) square
 - (D) parallelogram

20. The locus of the complex number satisfying $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{3}$ is a

- (A) straight line
- (B) circle
- (C) parabola
- (D) hyperbola

- 21. If z_1 , z_2 are two complex numbers such that $|z_1 + z_2| = |z_1| + |z_2|$, then it is necessary that
 - (A) $z_1 = z_2$
 - (B) $z_2 = 0$
 - (C) $z_1 = \lambda z_2$ for all real number λ
 - (D) $z_1 z_2 = 0$ or $z_1 = \lambda z_2$ for some real number λ

22. Consider the function $f(x) = \begin{cases} x - \sin x, \text{ if } x \text{ is rational} \\ 0, \text{ if } x \text{ is irrational} \end{cases}$. Then

- (A) f(x) is everywhere discontinuous
- (B) f(x) is continuous at one point
- (C) f(x) is continuous more than one point but at countable points
- (D) f(x) is continuous at exactly two points

23. The function f(x) = |x| + |x-1|, $x \in R$ is

- (A) continuous but not differentiable at x = 0 and x = 1
- (B) discontinuous at x = 0 and x = 1
- (C) discontinuous at x = 0 and not differentiable at x = 1
- (D) differentiable everywhere

24. The plane x + 2y - z = 4 and the sphere $x^2 + y^2 + z^2 + x + z - 2 = 0$

- (A) do not meet each other
- (B) intersect at only one point
- (C) intersect along a circle of unit radius
- (D) intersect along the great circle

25. The number of elements of order 11 in a group of order 33 are

- (A) 0
- (B) 10
- (C) 20
- (D) 30

26. The value of $div(r^n\overline{r})$ is

- (A) (n+3)r
- (B) $(n+3)r^{-2n}$
- (C) $(n+3)r^n$
- (D) $nr^{-(n+3)}$
- 27. Green's theorem applied to $\int_C (\cos x \sin y xy) dx + \sin x \cos y dy$, where *C* is the circle $x^2 + y^2 = 1$, yields
 - (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) 0
 - (D) $\frac{2}{3}$

28. The units of Z_6 are

- (A) 1, −1
- (B) 1, 2, 3, 5
- (C) 1, 5 (D) 1, 2, 2
- (D) 1, 2, 3, 4

29. The only function among the following that is analytic is

(A) f(z) = Re(z)(B) f(z) = Im(z)(C) $f(z) = \overline{z}$ (D) $f(z) = \sin z$

30. The series
$$g(z) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin n^2 \pi z$$
 is

- (A) not absolutely convergent
- (B) uniformly convergent
- (C) convergent but not uniformly convergent
- (D) not uniformly convergent

- 31. Let *A* be a real symmetric matrix. Then which of the following is true?
 - (A) A does not have 0 as an eigen value
 - (B) A has at least one positive eigen value
 - (C) If A^{-1} exists, then A^{-1} is real and symmetric
 - (D) All eigen values of *A* are complex numbers
- 32. The largest possible order of elements in S_7 is
 - (A) 7
 - (B) 12
 - (C) 8
 - (D) 6

33. The set of linearly independent solutions of the differential equation $\frac{d^4y}{d^4} - \frac{d^2y}{d^2} = 0$ is

- (A) $\{1, x, e^x, e^{-x}\}$
- (B) $\{1, x, e^{-x}, xe^{-x}\}$
- (C) $\left\{1, x, e^x, xe^x\right\}$
- (D) $\{1, x, e^x, xe^{-x}\}$
- 34. The least natural number *a* for which $x + ax^{-2} > 2$ for all $x \in R^+$
 - (A) 1
 - (B) 2
 - (C) 5
 - (D) 9

35. The orthogonal trajectories of the family $x^2 - y^2 = C_1$ are given by

- (A) $x^2 + y^2 = C_2$
- (B) $xy = C_2$

(C)
$$y = C_2$$

(D)
$$x = C_2$$

36. Let *C* be the positively oriented unit circle |z| = 1. Then the integral

$$\int_{C} \frac{e^{i\pi z} \sin(\pi z) z^{5}}{\left(z - \frac{1}{2}\right) \left(z + \frac{1}{2}\right)} dz \text{ is equivalent to}$$
(A) $-\frac{\pi}{4}$
(B) $\frac{\pi}{4}$
(C) $-\frac{\pi}{8}$
(D) $\frac{\pi}{8}$

37. Any three vectors
$$\{x_1, x_2, x_3\}$$
 in \square^2

- (A) are linearly independent
- (B) are linearly dependent
- (C) form a basis for \square^2
- (D) generate a non-trivial subspace of \square^2

38. The number abelian groups of order 8 is

- (A) 2
- (B) 3
- (C) 1
- (D) 4

39. The integral surface of the partial differential equation $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$ satisfying the condition u(1, y) = y is given by

(A) $u(x, y) = \frac{y}{x}$

(B)
$$u(x, y) = \frac{2y}{x+1}$$

(C)
$$u(x, y) = \frac{y}{2-x}$$

(D)
$$u(x, y) = y + x - 1$$

- 40. The probability that a single toss of a die will result in a number less than 4 if the toss resulted in an odd number is
 - (A) $\frac{1}{3}$ (B) $\frac{2}{3}$ (C) 1 (D) $\frac{1}{2}$
- 41. Let $T : \square^2 \to \square^2$ be the linear map which maps each point in \square^2 to its reflection on the *x*-axis. Then the determinant and trace of *T* are given by
 - (A) determinant = 1, trace = 0
 - (B) determinant = -1, trace = 1
 - (C) determinant = -1, trace = 0
 - (D) determinant = 2, trace = 1

42. The radius of convergence of
$$\sum \frac{n^2}{2^n} x^n$$
 is

- (A) 2
- (B) $\frac{1}{2}$
- (C) 1
- (D) ∞

43. The inverse Laplace transform of $\frac{s}{s^4 + 4a^4}$ is

(A) $-\frac{1}{2a}\sin at \sinh at$ (B) $-\frac{1}{2a^2}\sin at \sinh at$ (C) $\frac{1}{2a}\sin at \sinh at$

(D)
$$\frac{1}{2a^2}\sin at \sinh at$$

44. The number of generators of a cyclic group of order 8 is

- (A) 2
- (B) 4
- (C) 6
- (D) 8

45. Let $M(n, \Box)$ be the vector space of $n \times n$ matrices with real entries. Let U be the subset of $M(n, \Box)$ consisting $\{(a_{ij}) | a_{11} + a_{22} + ... + a_{nn} = 0\}$. Then the dimension of the subspace U is

- (A) $\frac{n(n+1)}{2}$ (B) n^2
- (C) $n^2 1$ (D) $\frac{n(n-1)}{2}$

46. The general integral of yzp + zxq = xy is

- (A) f(x+y, y+z) = 0
- (B) $f(x^2 + y^2, x^2 + z^2) = 0$
- (C) $f(x^2 y^2, x^2 z^2) = 0$
- (D) f(x+y+z,x) = 0

47. Let $f:[-1,1] \to \square$ be defined by $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, where \square is the

set of all real numbers. Then

- (A) f satisfies the condition of Rolles theorem on [1, 1]
- (B) f satisfies the condition of Lagranges mean value theorem on [1, 1]
- (C) f satisfies the condition of Rolles theorem on [0, 1]
- (D) f satisfies the condition of Lagranges mean value theorem on [0, 1]
- 48. The expectation of a discrete random variable *X*, whose probability function is given

by
$$f(x) = \left(\frac{1}{2}\right)^x$$
, $x = 1, 2, 3...,$ is

- (A) 1
- (B) $\frac{1}{2}$
- (C) 2
- (D) $\frac{1}{4}$

49. If $G \neq \{e\}$ is a group having no proper subgroup, then G is a

- (A) cyclic group of prime order
- (B) cyclic group of even order
- (C) cyclic group of odd order
- (D) group of even order

50. If D is the region defined by $1 \le x^2 + y^2 + z^2 \le 2$ and $z \ge 0$, then

$$\iiint_{D} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3/2}} dx \, dy \, dz \text{ is equal to}$$
(A) $\frac{2\pi}{3} \left(e^{\sqrt{8}}-e\right)$
(B) $2\pi \left(e^{\sqrt{8}}-e\right)$
(C) $\frac{\pi}{3} \left(e^{\sqrt{8}}-e\right)$
(D) $\frac{\pi}{2} \left(e^{\sqrt{8}}-e\right)$

- The values of a and b if the surfaces $ax^2 byz = (a+2)x$ and $4x^2y + z^3 = 4$ cut 51. orthogonally at (1, -1, 2) is
 - (A) a = -5/2, b = -1
 - (B) a = 5/2, b = -1
 - (C) a = -5/2, b = 1
 - (D) a = 5/2, b = 1

The interior of the set $\left\{ r \in \Box : 0 < r < \sqrt{2} \right\}$ is 52.

- (A)
- **(B)** □
- (C) *ø*
- (D) $\square -\{0\}$

53. The general solution of
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 is of the form

- (A) u = f(x+iy) + g(x-iy)(B) u = f(x+y) + g(x-y)
- (C) u = cf(x iy)
- (D) u = g(x+iy)
- The general integral of the partial differential equation 54. $(y+zx)z_x - (x+yz)z_y = x^2 - y^2$ is (A) $F(x^2 + y^2 + z^2, xy + z) = 0$ (B) $F(x^2 + y^2 - z^2, xy + z) = 0$ (C) $F(x^2 - y^2 - z^2, xy + z) = 0$

(C)
$$F(x^2 - y^2 - z^2, xy + z) = 0$$

(D)
$$F(x^2 + y^2 + z^2, xy - z) = 0$$

55. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. The probability that they are both aces if the first card is replaced is

(A)
$$\frac{1}{221}$$

(B) $\frac{1}{169}$
(C) $\frac{1}{122}$
(D) $\frac{1}{196}$

56. If f(x) is a polynomial of degree n in x, then nth difference of this polynomial is

- (A) a constant
- (B) *n*
- (C) zero
- (D) 1

57. Consider the following:

- (i) $n^2 + n$ is divisible by 2
- (ii) $n^3 n$ is divisible by 3
- (iii) $n^5 5n^3 + 4n$ is divisible by 5

Then

(A) Only (i) is true

And and a second

- (B) Only (i) and (ii) are true
- (C) Only (i) and (iii) are true
- (D) All the three are true

58. Consider the following statements.

- (i) The product of four consecutive integers is divisible by 24
- (ii) The product of five consecutive positive integers is a perfect square
- (iii) There exist infinitely many positive integers *n* such that $\frac{n}{2^n+1}$

(iv)
$$\frac{6}{n(n+1)(2n+1)}$$
 for each positive integer *n*

Then

- (A) (i) is true
- (B) (ii) is not true
- (C) (iii) is true
- (D) (iv) is true

59. Let $A = (a_{ij})$ be a 2 × 2 lower triangular matrix with diagonal entries

 $a_{11} = 1$ and $a_{22} = 3$. If $A^{-1} = (b_{ij})$ then

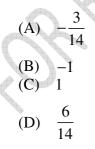
- (A) $b_{11} = 1, \ b_{22} = 1$
- (B) $b_{11} = 1, b_{22} = \frac{1}{3}$
- (C) $b_{11} = 3, b_{22} = 2$
- (D) $b_{11} = 3, b_{22} = 1$

60. Consider
$$A = \{(x, y) : (x+1)^2 + y^2 \le 1\} \cup \{(x, y) : y = x \sin \frac{1}{x}, x > 0\} \subseteq \square^2$$
. Then

- (A) A is compact
- (B) A is connected
- (C) A is bounded
- (D) A is not connected

- 61. The differential equation whose linearly independent solutions are $\cos 2x$, $\sin 2x$ and e^{-x} is
 - (A) $(D^3 + D^2 + 4D + 4)y = 0$
 - (B) $(D^3 D^2 + 4D 4)y = 0$
 - (C) $(D^3 + D^2 4D 4)y = 0$
 - (D) $(D^3 D^2 4D + 4)y = 0$
- 62. The smallest integer a > 2 such that 2|a, 3|a+1, 4|a+2, 5|a+3, 6|a+4(a|b mean a divides b) is
 - (A) 24
 - (B) 12
 - (C) 62
 - (D) 74
- 63. In a group of 100 people, each one knows at least 67 other people. Then the minimum number of people who are mutual friends is
 - (A) 0
 - (B) 2
 - (C) 3
 - (D) 4

64. A solution of the equation $\log_4(2x^2 + x + 1) - \log_2(2x - 1) = 1$ is



65. The second moment about the origin of the exponential distribution

$$f(x) = \frac{1}{c}e^{-x/c}, \ 0 \le x \le \infty, \ c > 0, \text{ is}$$

(A) $2c^2$
(B) c^3

- (C) c^2
- (D) $2c^3$

66. Suppose that *B* is a square matrix such that $B^2 = B$ and that $\lambda = 1$ is not an eigenvalue of *B*. Then *B* is

- (A) a zero matrix
- (B) a symmetric matrix
- (C) a diagonal matrix
- (D) any arbitrary non zero matrix
- 67. The set of all points of discontinuity of the function $f:[-1,1] \rightarrow \Box$ defined by

 $f(x) = \begin{cases} x, \text{ is if } x \text{ is irrational} \\ 0, \text{ is if } x \text{ is rational} \end{cases}$ is

- (A) [-1,1]
- (B) (-1,1)
- (C) $[-1,1]-\{0\}$
- (D) *ø*
- 68. Consider the statements.
 - (i) In a tree, every edge is a bridge
 - (ii) In a tree, every non pendant point is a cut point
 - (iii) Any connected graph (p,q) with p+1=q is a tree
 - (iv) Every tree is a bipartite graph

Then

- (A) (i) is not true
- (B) (ii) is not true
- (C) (iii) is not true
- (D) (iv) is not true

69. The number of non-zero homomorphisms from \Box_8 to \Box_{10} is

- (A) 8
- (B) 10
- (C) 2
- (D) 4

70. The bilinear transformation has ∞ and one finite point as fixed points, when

- (A) $c \neq 0; (d-a)^2 + 4bc \neq 0$
- (B) $c \neq 0; (d-a)^2 + 4bc = 0$
- (C) $c = 0; a \neq d$
- (D) c = 0; a = d

71. The solution of $\frac{dy}{dx} = \frac{y - x + 1}{y - x + 5}$ is

- (A) $(x y)^3 + 10y 5x = C$
- (B) $(y-x)^2 + 10y 2x = C$
- (C) $(x+y)^2 5y + 10x = C$
- (D) $(x+y)^3 10y 2x = C$

72. The sequence $\{1+(-1)^n\}$ has

- (A) exactly one constant subsequence
- (B) exactly two constant subsequences
- (C) exactly three constant subsequences
- (D) exactly four constant subsequences

73. Which amongst the following expressions is **NOT** true?

(A)
$$\lim_{n \to \infty} \frac{3n+2}{n+1} = 1$$

(B)
$$\lim_{n \to \infty} n \left(\frac{3n+7}{3n+3} - 1 \right) = \frac{4}{3}$$

(C)
$$\lim_{n \to \infty} \frac{3 + 2\sqrt{n}}{\sqrt{n}} = 2$$

(D)
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

74. Which amongst the following statements is **NOT** true?

- (A) A sequence cannot converge to move than one limit
- (B) Every convergent sequence is bounded
- (C) Every bounded sequence is convergent
- (D) Limit of a sequence is unique

75. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence converges to 0 and $\{b_n\}_{n=1}^{\infty}$ be a bounded sequence. Then $\{a_nb_n\}_{n=1}^{\infty}$

- (A) converges to one
- (B) converges to zero
- (C) is a divergent sequence
- (D) converges to two
- 76. Let $\sum a_n$ be a convergent series of positive terms and let $\sum b_n$ be a divergent series of positive terms. Then
 - (A) the sequence $\langle a_n \rangle$ is convergent and $\langle b_n \rangle$ is not convergent
 - (B) the sequence $\langle a_n \rangle$ converges to 0
 - (C) the sequence $\langle b_n \rangle$ does not converges to 0
 - (D) the sequence $\langle b_n \rangle$ diverges to ∞
- 77. If we expand sin x by Taylor's series about $\frac{\pi}{2}$, then a_2 , a_7 , a_4 , a_3 are

(A)
$$-\frac{1}{2}$$
, 0, $\frac{1}{24}$, 0
(B) $-\frac{1}{2}$, 0, $-\frac{1}{24}$, 0
(C) $\frac{1}{2}$, 0, $\frac{1}{24}$, 0
(D) 0, $-\frac{1}{2}$, 0, $\frac{1}{24}$

- 78. If f(x) and g(x) are two functions such that f'(x) = g'(x) on an interval *I*, then the difference function f g is
 - (A) the zero function on I
 - (B) a constant function on I
 - (C) a polynomial of degree one on I
 - (D) a polynomial of degree two on I

79. The function f(x) = |x| + 3 is

- (A) continuous as well as differentiable on R
- (B) continuous on R but not differentiable anywhere on R
- (C) not continuous on R
- (D) continuous on *R* and differentiable at all points on *R* except zero
- 80. Let $S = \{(1, i, 0), (2i, 1, 1), (0, 1 + i, 1 i)\}$ be a subset of the complex vector space C^3 and $T = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$ be the subset of the real vector space R^3 . Which of the following is correct?
 - (A) S and T are both basis
 - (B) S is a basis but T is not a basis
 - (C) S is not a basis but T is a basis
 - (D) Neither S nor T is a basis

81. If
$$X = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
, then the rank of $X^T X$,

(where X^T denotes the transpose of X), is

(A) 0
(B) 2
(C) 3
(D) 4

82. The system of equations x - y + 3z = 4, x + z = 2 and x + y - z = 0 has

- (A) unique solution
- (B) finitely many solutions
- (C) infinitely many solutions
- (D) no solution

83. If A be a non-zero square matrix of order n, then

- (A) the matrix A + A' is anti-symmetric, but the matrix A A' is symmetric
- (B) the matrix A + A' is symmetric, but the matrix A A' is anti-symmetric
- (C) both A + A' and A A' matrices are symmetric
- (D) both A + A' and A A' matrices are anti-symmetric

84. Let
$$A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & 5 & 6 \\ 0 & 0 & 7 \end{pmatrix}$$
. Then

- (A) A is diagonalizable but not A^2
- (B) A^2 is diagonalizable but not A
- (C) both A and A^2 are diagonalizable
- (D) neither A nor A^2 is diagonalizable
- 85. Let T_1 and T_2 be two linear operators on R^3 defined by $T_1(x, y, z) = (x, x + y, x - y - z)$ and $T_2(x, y, z) = (x + 2z, y - z, x + y + z)$. Then
 - (A) T_1 is invertible but not T_2
 - (B) T_2 is invertible but not T_1
 - (C) both T_1 and T_2 are invertible
 - (D) neither T_1 nor T_2 is invertible

86. The complex numbers $z_1 = 1 + 2i$, $z_2 = 4 - 2i$ and $z_3 = 1 - 6i$ form the vertices of

- (A) a right angled triangle
- (B) an isosceles triangle
- (C) an equilateral triangle
- (D) a scalene triangle

87. The radius of convergence of the power series $\sum_{n=0}^{\infty} (n+2i)^n z^n$ is

- (A) 0
- (B) 1
- (C) ∞
- (D) 2

88. The center of convergence of
$$\sum_{n=0}^{\infty} (n+2i)^n z^n$$
 is

- (A) 0
- (B) 1
- (C) 2
- (D) 3

89. The function $f(z) = \log(z^2 + z - 2)$ has branch poles at

- (A) z = 1, z = -1
- (B) z = 2, z = -2
- (C) z = 1, z = -2
- (D) z = 3, z = -2
- 90. The bilinear transformation which maps the points $z_1 = 2$, $z_2 = i$ and $z_3 = -2$ into the points $w_1 = 1$, $w_2 = i$ and $w_3 = -1$ respectively, is

(A)
$$w = \frac{3z + 2i}{iz + 6}$$

(B)
$$w = 0$$

(C)
$$w = iz$$

(D)
$$w = \frac{z^2}{2}$$

- 91. Numbers between 5000 and 10000 are formed from the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 each digit not appearing more than once in each number. The number of such numbers is
 - (A) 1080
 - (B) 1680
 - (C) 336
 - (D) 1008

92. If
$$gcd(a,b) = 1$$
, then $gcd(a+b,a^2-ab+b^2)$ is

- (A) 0 or 1
- (B) 1 or 2
- (C) 1 or 3
- (D) 2 or 3

93. Number of the solutions of the congruence $15x \equiv 6 \pmod{21}$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

94. If $ac \equiv bc \pmod{m}$ and d = (m, c), then

(A)
$$a \equiv b \left(\mod \frac{m}{d} \right)$$

(B) $a \equiv c \left(\mod \frac{m}{d} \right)$
(C) $a \equiv m \left(\mod \frac{b}{d} \right)$

(D)
$$a \equiv b \pmod{c}$$

95. Let $G = \{(0,1,2,3,4), +_5\}$. Then the order of 2 in *G* is

(A) 1 (B) 2 (C) 4 (D) 5

96. Given the permutation $c = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$. Then c^3 is

- 97. Suppose G is a group and N is a normal subgroup of G. Let $F: G \to \frac{G}{N}$ defined by $F(x) = Nx \ \forall x \in G$. Then
 - (A) *F* is a homomorphism of *G* into $\frac{G}{N}$ with ker $F \neq N$
 - (B) *F* is a homomorphism of *G* onto $\frac{G}{N}$ with ker $F \neq N$
 - (C) *F* is a homomorphism of *G* into $\frac{G}{N}$ with ker F = N
 - (D) *F* is a homomorphism of *G* onto $\frac{G}{N}$ with ker F = N
- 98. Which of the following is a compact subspace of R?
 - (A) $\{0\} \cup \{n \mid n \in z_+\}$
 - (B) The subspace $X = \{0\} \cup \{\frac{1}{n} \mid n \in z_+\}$ of R
 - (C) [0, 1)
 - (D) (0, 1)
- 99. The real part of the complex number $(1+i)^n$ is

(A)
$$2^{\frac{n}{2}}\cos\frac{n\pi}{4}$$

(B) $2^{n}\cos\frac{n\pi}{2}$
(C) $2^{\frac{n}{2}}\cos n\pi$
(D) $2^{-n}\cos\frac{n\pi}{2}$

If |z| = |z-1|, then equal to 100.

- (A) $\operatorname{Re}(z) = 1$
- (B) $\operatorname{Re}(z) = \frac{1}{2}$ (C) $\operatorname{Im}(z) = 1$
- (D) $\text{Im}(z) = \frac{1}{2}$

The value of the integral $\iint_{C} \frac{e^{z}}{z-2} dz$ where C: |z|=3 is 101.

- (A) $2\pi i e^2$
- (B) $2\pi i e$
- (C) e^2
- (D) $2\pi i$

The unit digit of 2^{100} is 102.

- (A)
- 2 4 **(B)**
- (C) 6
- (D) 8
- 103. The number of generators in a cyclic group of order 10 is
 - (A) 3 1 (B) 2 (C)
 - 4 (D)

104. If α and β are the eigenvalues of $\begin{bmatrix} 3 & -1 \\ -1 & 5 \end{bmatrix}$, then the matrix whose eigenvalues are α^3 and β^3 is

(A)
$$\begin{bmatrix} 38 & -50 \\ -50 & 138 \end{bmatrix}$$

(B) $\begin{bmatrix} -50 & 38 \\ 138 & -50 \end{bmatrix}$
(C) $\begin{bmatrix} -50 & -50 \\ 38 & 138 \end{bmatrix}$
(D) $\begin{bmatrix} -50 & -50 \\ 138 & 38 \end{bmatrix}$

- 105. Given that the equations x + y + z = 6, x + 2y + 3z = 10 and $x + 2y + \lambda z = \mu$ have an infinite number of solutions. Then
 - (A) $\lambda = 10, \mu = 3$ (B) $\lambda = 5, \mu = 5$ (C) $\lambda = 3, \mu = 10$ (D) $\lambda = 2, \mu = 10$
- 106. $\lim_{x \to 0} \frac{\sinh x \sin x}{x^3}$ is equal to (A) $\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{5}$

107. If
$$\frac{\tan \theta}{\theta} = \frac{2524}{2523}$$
, then θ is equal
(A) $\frac{1}{28}$ radians
(B) $\frac{1}{29}$ radians
(C) $\frac{1}{30}$ radians
(D) $\frac{1}{25}$ radians

108. $\sinh^{-1}\sqrt{x^2 - 1} =$

- (A) $\sinh^{-1} x$
- (B) $\tanh^{-1} x$
- (C) $\cosh^{-1} x$
- (D) $\cot^{-1} x$

109. An equation of the form $z\overline{z} + b\overline{z} + \overline{b}\overline{z} + c = 0$ (*c* is real) represents

- (A) a circle
- (B) an ellipse
- (C) a parabola
- (D) a hyperbola

110. The transformation $w = \cos z$ makes the line x = a in the *z*-plane corresponds to

to

- (A) a hyperbola
- (B) a parabola
- (C) an ellipse
- (D) a circle

111. The residue of
$$\frac{z^2}{z^2 + a^2}$$
 at $z = ia$ is

- (A) ia
- (B) 2*ia*
- (C) $\frac{1}{2}ia$
- (D) 3*ia*
- 112. The standard deviation of a symmetrical distribution is 3. The fourth moment about mean (assuming that the distribution is mesokurtic) is
 - (A) 240
 - (B) 241
 - (C) 242
 - (D) 243
- 113. The coefficients of correlation between two variables x and y is 0.8. The covariance between x and y is 18 and the standard deviation of x is 3. The standard deviation of y is
 - (A) 7
 - (B) 8
 - (C) 7.5
 - (D) 8.5
- 114. If the two regression coefficients are 0.8 and 0.2, then the value of correlation coefficient is
 - (A) r = 0.2(B) r = 0.3(C) r = 0.1(D) r = 0.4
- 115. If \overline{a} is constant vector and \overline{r} is the position vector of any point, then div $(\overline{a} \times \overline{r})$ is
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3

116. If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$ and $r = |\overline{r}|$, then $r^n \overline{r}$ is solenoidal, if

- (A) n = -2
- (B) n = -3
- (C) n = -1
- (D) n = 1

117. The image of x + y = 2 under the transformation $w = z^2$ is

- (A) a hyperbola
- (B) a circle
- (C) an ellipse
- (D) a parabola

118. The series
$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \frac{1}{4.5} + \dots$$
 is

- (A) divergent
- (B) convergent
- (C) oscillating
- (D) converges to 10
- 119. If $c_0, c_1, c_2, ..., c_n$ denote the binomial coefficients in the expansion of $(1+x)^n$, then $c_1 + 2c_2 + 3c_3 + ... nc_n =$
 - (A) $n.2^n$

(D)

- (B) $n.2^{n+1}$
- (C) $n.2^{n-1}$

 2^n

120. Sum the series to *n* terms: $\frac{3}{1.4} + \frac{5}{4.9} + \frac{7}{9.16} + \frac{9}{16.25} + \dots$

(A)
$$1 + \frac{1}{(n+1)^2}$$

(B) $1 - \frac{1}{(n+1)^2}$
(C) $1 - \frac{1}{(n-1)^2}$
(D) $1 + \frac{1}{(n-1)^2}$

121. A particle moves along a straight line according to the law $s = t^3 - 6t^2 + 9t^2 + 3$. The velocity, at the instant where its acceleration is zero, is

- (A) -3 unit/sec
- (B) -2 unit/sec
- (C) 3 unit/sec
- (D) 2 unit/sec

122. The value of (to five places of decimals) cube root of 1003 is

- (A) 10.00333
- (B) 10.00666
- (C) 10.00444
- (D) 10.00999

123.
$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix}$$
 is a
(A) perfect square
(B) quadratic

- (B) quadratic
- (C) biquadratic
- (D) perfect cube

- 124. The value of the point *c* of the Mean value theorem for the function $f(x) = 1 - x^2$ in $0 \le x \le 2$ is
 - (A) c = 2(B) c = 3(C) c = 0(D) c = 1

125. The area of the region bounded by the parabola $y = 2 - x^2$ and the line y = -x is

(A) $\frac{9}{4}$ (B) $\frac{3}{4}$ (C) $\frac{9}{2}$ (D) $\frac{5}{2}$

126. $\lim_{x \to 0} \frac{4 - \sqrt{16 + x}}{x}$ is equal to

(A) $\frac{1}{8}$ (B) $-\frac{1}{2}$

(C)
$$\frac{1}{4}$$

(D) $-\frac{1}{4}$

- 127. Ten percent of the tools produced in a certain manufacturing process turn out to be defective. The probability that in a sample of 10 tools chosen at random, exactly 2 will be defective is
 - (A) 0.19
 - (B) 0.16
 - (C) 0.15
 - (D) 0.17

- 128. The density function of a random variable x is given by $f(X) = \frac{1}{2^x}$, 0 < x < 2. The expected value of x is
 - (A) $\frac{3}{4}$ (B) $\frac{4}{5}$ (C) $\frac{4}{3}$ (D) $\frac{5}{3}$
- 129. If $f: A \to B$ and $g: B \to C$ be functions such that the $g \circ f: A \to C$ is surjective, then the mapping g is
 - (A) injective
 - (B) surjective
 - (C) bijective
 - (D) not surjective

130. If a, b are elements of a group G such that O(a) = 3 and $aba^{-1} = b^2$, then O(b) is

- (A) 4
- (B) 5
- (C) 6
- (D) 7

131. Let *R* be a ring such that $a^2 = a$ for all $a \in R$. Then, for any element *b* in *R*, 2*b* equals

- (A) 0
 (B) 1
 (C) 2
 (D) 4
- 132. A basis of R^3 which contains (1, 2, 0) and (1, 3, 1) is
 - (A) $\{(1, 2, 0), (1, 3, 1), (0, 1, 0), (1, 1, 0)\}$
 - (B) {(1, 2, 0), (0, 1, 0), (1, 3, 1)}
 - (C) {(1, 2, 1), (0, 1, 1), (1, 3, 1)}
 - (D) $\{(1, 2, 0), (1, 3, 1), (1, 1, 1), (-1, 1, 0)\}$

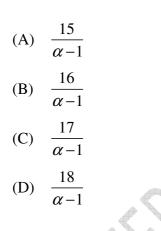
133. All the characteristics roots of a Hermitian matrix are

- (A) real
- (B) imaginary
- (C) rational
- (D) irrational

134. If x + y + z = 1, then the least value $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} =$

- (A) 9
- (B) 8
- (C) 6
- (D) 4

135. If α is special root of the equation $x^8 - 1 = 0$, then $1 + 3\alpha + 5\alpha^2 + ... + 15\alpha^7 =$



- 136. If $U = L\{(1,2,1), (2,1,3)\}$ and $W = L\{(1,0,0), (0,1,0)\}$ are the subspaces of \mathbb{R}^3 , then dim(U + W) =
 - (A) 1
 (B) 2
 (C) 4
 (D) 3

137. If
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix}$$
, then
(A) $\Delta = (a-b)(b-c)(c-a)(ab-bc-ca)$
(B) $\Delta = (a-b)(b-c)(c-a)(ab+bc+ca)$
(C) $\Delta = (a+b)(b+c)(c-a)(ab+bc+ca)$
(D) $\Delta = (a+b)(b+c)(c+a)(ab+bc+ca)$

138. The direction cosines of the line joining the points A(-4,9,6) and B(-1,6,6) are

(A)
$$\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0$$

(B) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$
(C) $1, -\frac{1}{\sqrt{2}}, 0$
(D) $\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

139. The equation of a sphere described on the line joining the points (2, -1, 4) and (-2, 2, -2) as diameter, is

(A) $x^2 + y^2 + z^2 + y + 2z - 14 = 0$

(B)
$$x^2 + y^2 + z^2 - y - 2z - 14 = 0$$

(C)
$$x^2 + y^2 + z^2 + y - 2z + 14 = 0$$

(D)
$$x^2 + y^2 + z^2 + y + 2z + 14 = 0$$

140. The n^{th} order derivative of $\sin(ax+b)$ is

(A)
$$a^{n} \sin\left(ax+b+\frac{\pi}{2}\right)$$

(B) $a^{n-1} \sin\left(ax+b+\frac{\pi}{2}\right)$
(C) $a^{n} \sin\left(ax+b+\frac{n\pi}{2}\right)$
(D) $a^{n-1} \sin\left(ax+b+\frac{n\pi}{2}\right)$

141. The value of
$$\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2} - x^{2}}} dx$$
 is equal to

(A)
$$\frac{16}{35a^7}$$

(B) $\frac{17}{35a^7}$
(C) $\frac{19}{35a^7}$
(D) $\frac{13}{35a^7}$

142. A problem in mechanics is given to 3 students A, B and C whose chances of solving it are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respectively. Then the probability that the problem will be solved is

(A)
$$\frac{1}{4}$$

(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{3}{4}$

143. The vectors $X_1 = (1, 1, -1, 1), X_2 = (1, -1, 2, -1), X_3 = (3, 1, 0, 1)$

- (A) are linearly dependent
- (B) are linearly independent
- (C) form a basis for \square ³
- (D) form a basis for \Box^4

144. One of the particular integral of the PDE $r - 2s + t = \cos(2x + 3y)$ is

- (A) $\sin(2x+3y)$
- (B) $\cos(3x+2y)$
- (C) $\sin(2x-3y)$
- (D) $\cos(x+y)$

145. The order x^7 in a group of order 56 is

- (A) 8
- (B) 16
- (C) 24
- (D) 56

146. The characteristic of $\left(\Box_{189}, +, \cdot\right)$ is

- (A) 1
- (B) 17
- (C) 189
- (D) ∞

147. The number of group homomorphisms from S_3 to \Box_6 is

(A) 1
(B) 2
(C) 3
(D) 4

148. The automorphism group of the group $(\Box_{10}, +_{10})$ is a

- (A) group of order 3
- (B) cyclic group of order 4
- (C) non-abelian group
- (D) non cyclic group of order 4

149. Let $f: A \to A$ and $B \subset A$. Then which of the following is always true.

(A) $B \subset f^{-1}(f(B))$ (B) $B = f^{-1}(f(B))$ (C) $B \subset f(f^{-1}(B))$ (D) $B = f(f^{-1}(B))$

150. If \overline{A} and \overline{B} are irrotational vectors, then $(\overline{A} \times \overline{B})$ is

- (A) irrotational
- (B) rotational
- (C) solenoidal
- (D) flux

FINAL ANSWER KEY Subject Name: 612 MATHEMATICS									
1	C	31	С	61	A	91	В	121	A
2	C	32	В	62	С	92	С	122	D
3	D	33	Α	63	D	93	В	123	D
4	В	34	В	64	С	94	Α	124	D
5	D	35	В	65	Α	95	D	125	С
6	C	36	С	66	Α	96	В	126	В
7	A	37	В	67	C	97	D	127	Α
8	C	38	В	68	C	98	В	128	С
9	A	39	Α	69	C	99	A	129	В
10	D	40	В	70	C	100	В	130	D
11	D	41	С	71	В	101	A	131	Α
12	D	42	Α	72	В	102	C	132	В
13	C	43	D	73	Α	103	D	133	Α
14	C	44	В	74	С	104	Α	134	Α
15	C	45	С	75	В	105	С	135	В
16	C	46	С	76	В	106	С	136	D
17	C	47	D	77	Α	107	В	137	В
18	D	48	С	78	В	108	С	138	Α
19	D	49	A	79	D	109	Α	139	В
20	В	50	Α	80	В	110	Α	140	C
21	D	51	D	81	С	111	С	141	Α
22	В	52	С	82	С	112	D	142	D
23	Α	53	A	83	В	113	С	143	Α
24	C	54	В	84	С	114	D	144	Α
25	В	55	В	85	А	115	Α	145	Α
26	C	56	Α	86	В	116	В	146	В
27	C	57	D	87	Α	117	D	147	C
28	C	58	В	88	Α	118	В	148	В
29	D	59	В	89	С	119	С	149	Α
30	В	60	В	90	А	120	В	150	С