101 Test in Physics Chemistry and Mathematics (Shift 3)

- 1. When there is an electric current through a conducting wire along its length, then an electric field must exist
 - (A) outside the wire but normal to it
 - (B) outside the wire but parallel to it
 - (C) inside the wire but normal to it
 - (D) inside the wire but parallel to it
- 2. A moving charge produces electric field along *x*-direction and magnetic field along *y*-direction. Then what is the direction of its velocity?
 - (A) x direction
 - (B) *y* direction
 - (C) z direction
 - (D) Can be in any direction
- 3. Phase difference between voltage and current of a purely inductive circuit is
 - (A) $\frac{\pi}{2}$
 - (B) $\frac{\pi}{12}$
 - (C) $\frac{\pi}{8}$
 - (D) $\frac{\pi}{2}$
- 4. When two coherent sources of same intensity interfere, the resultant intensity will be
 - (A) 4 times of the initial intensity
 - (B) 8 times of the initial intensity
 - (C) 2 times of the initial intensity
 - (D) Equal to initial intensity

- 5. Wavelength of source is 6000 Å and the diameter of object is 100 inch, so the limit of resolution is
 - (A) 2.9×10^{-7} radians
 - (B) 2.8×10^{-7} radians
 - (C) 2.5×10^{-7} radians
 - (D) 2.8×10^{-5} radians
- 6. The SI units of radioactivity is
 - (A) Curie
 - (B) Fermi
 - (C) Becquerel
 - (D) Joule
- 7. The mean life for particle decay is
 - (A) 1.145 times greater than half life
 - (B) 1.445 times greater than half life
 - (C) 1.465 times greater than half life
 - (D) 1.345 times greater than half life
- 8. Which of the following electromagnetic waves have lowest wavelength?
 - (A) Green light
 - (B) X-rays
 - (C) Gamma rays
 - (D) Ultraviolet rays
- 9. Fermi energy level of the intrinsic semiconductor is located
 - (A) just below the valence band
 - (B) just above the conduction band
 - (C) either below or above the conduction band
 - (D) half way between the valence and conduction band
- 10. Zener diode is always used in the
 - (A) Forward bias condition
 - (B) Reverse bias condition
 - (C) Zero bias condition
 - (D) All the above

- 11. At room temperature, the n-type semiconductor will have
 - (A) more of electrons
 - (B) more of ions
 - (C) more of holes
 - (D) equal number of electrons and holes
- 12. The SI base unit for forces is
 - (A) $mkgs^{-2}$
 - (B) N
 - (C) mkgs²
 - (D) $m^2 kg s^{-2}$

13. When light rays enter into a medium having different optical density, there will be change in

- (A) its speed and frequency
- (B) its speed and wavelength
- (C) its frequency and wavelength
- (D) its speed, frequency and wavelength
- 14. An electric dipole placed in a non uniform electric field experiences
 - (A) no force and no torque
 - (B) a force and a torque
 - (C) no force but a torque
 - (D) a force but no torque
- 15. Which of this experiment proves that particle has wave nature?
 - (A) Davisson-Germer experiment
 - (B) Millikan experiment
 - (C) Faraday's experiment
 - (D) Newton rings experiment
- 16. A proton and an alpha particle are accelerated by a constant electric field. Their acceleration will be in the ratio of
 - (A) 2:1
 - (B) 3:1
 - (C) 1:1
 - (D) 1:2

- 17. Superconductor exhibits
 - (A) paramagnetism
 - (B) ferromagnetism
 - (C) diamagnetism
 - (D) ferrimagnetism
- 18. At what distance from the point of equilibrium, the kinetic energy equals the potential energy for a simple harmonic oscillator of amplitude *A*?

(A)
$$\frac{A}{4}$$

(B) $\frac{A^2}{4}$
(C) $\frac{A}{\sqrt{2}}$
(D) $\frac{A}{2}$

- 19. For a given material, the Young's modulus is 6 times its rigidity modulus. Its Poisson's ratio is
 - (A) 0.2
 - (B) 2
 - (C) 4
 - (D) 0.4
- 20. The gravitational potential of a solid sphere is minimum
 - (A) at the surface of the sphere
 - (B) at a point outside the sphere
 - (C) at midpoint between the centre and surface of the sphere
 - (D) at the centre of the sphere

21. Adding detergent to the water, increases its

- (A) surface tension
- (B) viscosity
- (C) wetting action
- (D) angle of contact

- 22. A 2 kg box sits on a 3 kg box which sits on a 5 kg box. The 5 kg box rests on a table top. What is the normal force exerted on the 5 kg box by the table top?
 - (A) 29.4 N
 - (B) 49 N
 - (C) 98 N
 - (D) 19.6 N
- 23. A Decoration of mass *M* is suspended by a string from the ceiling inside an elevator. The elevator is travelling upward with a constant speed. The tension in the string is
 - (A) equal to Mg
 - (B) less than Mg
 - (C) greater than Mg
 - (D) impossible to tell without knowing the speed
- 24. If the pressure of an ideal gas in a closed chamber is doubled, then the volume of the gas
 - (A) become two times
 - (B) becomes half
 - (C) remain constant
 - (D) become four times
- 25. The work done by pseudo forces is
 - (A) Positive
 - (B) Negative
 - (C) Zero
 - (D) Infinite
- 26. In an isothermal process, the specific heat of the gas is
 - (A) finite
 - (B) one
 - (C) zero
 - (D) infinite
- 27. Which theory explains that every point on a wavefront may be considered as a source of secondary spherical wavelets?
 - (A) Huygen's wave theory
 - (B) Corpuscular theory
 - (C) Electromagnetic theory
 - (D) Quantum theory

- 28. Which light source is used in long distance optical fiber communication?
 - (A) Metal Halide light
 - (B) Incandescent light
 - (C) LED source
 - (D) Laser
- 29. The NAND gate output will be low if the two inputs are
 - (A) 01
 - (B) 00
 - (C) 10
 - (D) 11
- 30. Cp and Cv are specific heats at constant pressure and constant volume respectively. It is observed that Cp - Cv = a for oxygen gas and Cp - Cv = b for nitrogen gas. The correct relation between *a* and *b* is
 - (A) 8a = 7b
 - (B) 7a = 8b
 - (C) a = b
 - (D) a = -b
- 31. The temperature of a body falls from 40°C to 36°C in 5 minutes when placed in a surrounding of constant temperature 16°C. The time taken by the body temperature to fall from 36°C to 32°C is
 - (A) 8 min
 - (B) 6.1 min
 - (C) 4.2 min
 - (D) 5 min
- 32. 2 kg ice at -20° C is mixed with 5 kg water at 20°C, then final amount of water in the mixture will be (specific heat of ice is = 0.5 cal/gm°C; specific heat of water is = 1 cal/gm°C; latent heat of fusion is 80 cal/gm)
 - (A) 6 kg
 - (B) 7 kg
 - (C) 3.5 kg
 - (D) 5 kg

- 33. The minimum orbital angular momentum of an electron in hydrogen atom is
 - (A) h(B) $\frac{h}{2}$ (C) $\frac{h}{2\pi}$ (D) $\frac{h}{2}$

34. Cooking gas containers are kept in a lorry moving with uniform speed. The temperature of the gas molecules inside will be

- (A) increase
- (B) decrease
- (C) remain same
- (D) increases for some while decreases for others
- 35. An electric dipole is placed at an angle of 30° in a non-uniform electric field. The dipole will experience
 - (A) a translational force only in the direction of the field
 - (B) a translational force only in a direction normal to the direction of the field
 - (C) a torque as well as a translational force
 - (D) a torque only
- 36. Which of the following phenomena is **NOT** common to sound and light waves?
 - (A) Interference
 - (B) Diffraction
 - (C) Coherence
 - (D) Polarization
- 37. If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of Li^{2+} is
 - (A) 30.6 eV
 - (B) 13.6 eV
 - (C) 3.4 eV
 - (D) 122.4 eV

- 38. Heat transfer in air occurs mainly due to
 - (A) Conduction
 - (B) Convection
 - (C) Radiation
 - (D) Radiation and Conduction
- 39. A body weighs 40 g in air. If its volume is 10 cc, then in water it will weigh
 - (A) 30 g
 - (B) 40 g
 - (C) 50 g
 - (D) 33 g

40. The strength of the magnetic field around a straight wire is

- (A) Same everywhere around the wire
- (B) Obeys inverse square law
- (C) Directly proportional to square of the distance from the wire
- (D) Directly proportional to the distance from the wire
- 41. The electrostatic pressure on a charged surface having a surface charge density σ is
 - (A) $\sigma/2\epsilon_0$
 - (B) $\sigma^2/2\epsilon_0$
 - (C) σ/ϵ_0
 - (D) σ^2 / ϵ_0
- 42. According to Joule's law, if the potential difference across a conductor having a material of specific resistance ' ρ ' remains constant, then heat produced in the conductor is directly proportional to
 - (A) ρ
 - (B) ρ^2
 - $(C) \quad 1 \, / \, \rho$
 - (D) 1/ $\sqrt{\sigma}$

- 43. A circular coil of radius *R* carries a current *I*, for which the magnetic field at its centre is *B*. At what distance *x* from the centre on the axis of the coil, the magnetic field will be B/8
 - (A) $\sqrt{2} R$
 - (B) $\sqrt{3}R$
 - (C) 2*R*
 - (D) 3*R*
- 44. If a magnet is enclosed in a box made up of iron, then the magnetic field outside the box will be
 - (A) very high but finite
 - (B) infinity
 - (C) low value but finite
 - (D) zero
- 45. A bar magnet is dropped vertically down through a wire loop held horizontally. The magnet will fall
 - (A) with acceleration 'g'
 - (B) with acceleration greater than 'g'
 - (C) with uniform acceleration less than 'g'
 - (D) with non-uniform acceleration less than 'g'
- 46. The mutual inductance between a pair of coils does not depend on
 - (A) number of turns in the coil
 - (B) separation between the coils
 - (C) relative orientation of the coil
 - (D) rate of change of current with coils
- 47. Which of the following statement is **NOT** correct?
 - (A) The magnification produced by a convex mirror is always less than one
 - (B) A virtual, erect, same-sized image can be obtained using a plane mirror
 - (C) A virtual, erect, magnified image can be formed using a concave mirror
 - (D) A real, inverted, same-sized image can be formed using a convex mirror

48. A beam of light consisting of red, green and blue colours is incident on AB of a right angled prism. The refractive index of the material of the prism for red, green and blue are 1.39, 1.44 and 1.47 respectively. The prism will

- (A) separate red colour from the green and blue colour
- (B) separate blue colour from the red and green colour
- (C) separate all the colours from one another
- (D) all colours propagate along same path
- 49. Light from the constellation Virgo is observed to increase in wavelength by 0.4%. With respect to the earth the constellation is
 - (A) moving away with velocity 1.2×10^6 m/s
 - (B) coming close with velocity 1.2×10^6 m/s
 - (C) moving away with velocity 4×10^6 m/s
 - (D) coming close with velocity 4×10^6 m/s
- 50. When light passes from one medium into another medium, which of the physical property does not change?
 - (A) Velocity
 - (B) Wavelength
 - (C) Frequency
 - (D) Refractive index
- 51. In hydrogen atom, if the difference in the energy of the electron in n = 2 and n = 3 orbits is E, the ionization energy of hydrogen atom is
 - (A) 13.2 E
 - (B) 7.2 E
 - (C) 5.6 E
 - (D) 3.2 E

- 52. Nucleus with same neutron number but different atomic number is called as
 - (A) isobars
 - (B) isotones
 - (C) isotopes
 - (D) isotherm
- 53. The mass of one Curie of U^{234} is
 - (A) 3.7×10^{10} gm
 - (B) 2.348×10^{23} gm
 - (C) 1.48×10^{-11} gm
 - (D) 6.25×10^{-24} gm
- 54. A voltmeter with resistance 150Ω is connected across a 150 V source having an internal resistance of 0.8 Ω , then the voltmeter will read
 - (A) 100.4
 - (B) 149.2
 - (C) 120
 - (D) 178.6
- 55. Electrical conductivity of a semiconductor
 - (A) decreases with the rise in its temperature
 - (B) increases with the rise in its temperature
 - (C) does not change with the rise in its temperature
 - (D) first increases and then decreases with the rise in its temperature
- 56. In an insulator, the energy gap between the valance band and conduction band is of the order of
 - (A) > 5 eV
 - (B) 2 eV
 - (C) 3.6 eV
 - (D) 4.1 eV

- 57. Three small spheres, each carrying a positive charge Q, are placed on the circumference of a circle of radius 'r' to form an equilateral triangle. The electric field intensity at the center of the circle will be
 - (A) 3Q/r
 - (B) $3Q/r^2$
 - (C) $Q/2r^2$
 - (D) zero
- 58. In an LCR series a.c circuit, the voltage across each of the components, L, C, and R is 50 V. The voltage across the LC combination will be
 - (A) 100 V
 - (B) $50\sqrt{2}$ V
 - (C) 50 V
 - $(D) \quad 0 \ V \ (zero)$
- 59. A telescope has a magnifying power of 10. If one looks at a tree of height 15 meters through the telescope, then the tree appears
 - (A) 10 times taller
 - (B) 10 times farther
 - (C) 10 times nearer
 - (D) 15 times nearer
- 60. If the radius of the Earth's orbit is made one-fourth, the duration of one year will become
 - (A) 8 times
 - (B) 4 times
 - (C) $\frac{1}{4}$ times
 - (D) $\frac{1}{8}$ times
- 61. In which of the following thermodynamic processes, there is no flow of heat between the system and the surroundings?
 - (A) Isobaric
 - (B) Isochoric
 - (C) Adiabatic
 - (D) Isothermal

- 62. Entropy remains constant in
 - (A) isothermal process
 - (B) adiabatic process
 - (C) cyclic process
 - (D) isobaric process
- 63. While charging the lead storage battery
 - (A) PbSO₄ at cathode is reduced to Pb
 - (B) PbSO₄ at anode is reduced to Pb
 - (C) PbSO₄ at cathode is oxidised to Pb
 - (D) PbSO₄ at anode is oxidised to Pb
- 64. Axial ratios of hexagonal will be
 - (A) a = b = c
 - (B) $a = b \neq c$
 - (C) $a \neq b \neq c$
 - (D) a = 2b = 3c
- 65. Structure of cesium chloride crystal is
 - (A) face centred cubic
 - (B) body centred cubic
 - (C) simple cubic
 - (D) hexagonal close packing

- 66. What type of stoichiometric defect is shown by ZnS?
 - (A) Schottky defect
 - (B) Frenkel defect
 - (C) Both Frenkel and Schottky defects
 - (D) Plane defect
- 67. Which one of the following is **NOT** applicable to catalytic action?
 - (A) Catalyst reduces energy of activation
 - (B) Catalyst will be most effective in the finely divided state
 - (C) Catalyst can alter the position of equilibrium of reversible reactions
 - (D) Catalyst cannot initiate a reaction

68. If dispersed phase and dispersion medium are gas and liquid, respectively, then the name of the colloidal system is

- (A) aerosol
- (B) solid foam
- (C) foam
- (D) emulsion
- 69. The electric charge on a colloidal particle is observed by
 - (A) Brownian movement
 - (B) Electrolysis
 - (C) Electrodialysis
 - (D) Electrophoresis
- 70. 'All four quantum numbers cannot be the same for any two electrons in an atom'. This principle is known as
 - (A) Aufbau principle
 - (B) Hund's rule
 - (C) Pauli's Exclusion principle
 - (D) Plank's rule
- 50 ml of 0.1 M acetic acid is mixed with 50 ml 0.1 M sodium acetate. The pH of the solution is (pK_a of acetic acid is 4.26)
 - (A) 13.0
 - (B) 7.0
 - (C) 4.26
 - (D) 1.0

- 72. One mole of an ideal gas undergoes expansion from 24.6 *l* to 246.0 *l* against a constant pressure of 1 atmosphere at 300 K. The work done is
 - (A) 221.4 *l* atm
 - (B) 24.6 *l* atm
 - (C) 9.0 *l* atm
 - (D) 0.082 *l* atm

73. Aqueous solution of CuSO₄ is electrolyzed between the Pt electrodes. At anode

- (A) Cu is oxidized to Cu^{2+}
- (B) Cu^{2+} is reduced to Cu
- (C) H_2 gas is evolved
- (D) O_2 gas is evolved
- 74. IUPAC name of the following compound is

- (A) 4-formyloctan-2-one
- (B) 2-(2-oxopropyl)hexanal
- (C) 2-butyl-4-oxopentanal
- (D) 2-butyl-4-ketopentanal
- 75. Carbon monoxide (CO) acts as a
 - (A) strong π -donor and weak π -acceptor
 - (B) weak π -donor and strong π -acceptor
 - (C) weak σ -donor and strong π -acceptor
 - (D) strong σ -donor and good π -acceptor

76. Methoxypropane and Ethoxyethane constitute a pair of

- (A) functional group isomers
- (B) metamers
- (C) position isomers
- (D) regioisomers

- 77. The stability order of methyl, ethyl, isopropyl and *tert*-butyl carbocations is
 - (A) methyl > ethyl > isopropyl > *tert*-butyl
 - (B) methyl < ethyl < isopropyl < tert-butyl
 - (C) methyl \approx ethyl > isopropyl > *tert*-butyl
 - (D) methyl < ethyl \approx isopropyl < *tert*-butyl
- 78. Compare the steam volatility of 2-hydroxybenzaldehyde with that of 4-hydroxybenzaldehyde.

- (A) both are equally steam volatile
- (B) both are not steam volatile
- (C) 2-hydroxybenzaldehyde is much more steam volatile than 4-hydroxybenzaldehyde
- (D) 4-hydroxybenzaldehyde is much more steam volatile than 2-hydroxybenzaldehyde
- 79. The active stationary phase in Partition chromatography over chromatographic paper is
 - (A) cellulose
 - (B) starch
 - (C) hemicellulose
 - (D) water trapped in chromatographic paper
- 80. Kolbe's electrolytic method is suitable for the generation of which among the following gases in the pure form?
 - (A) Methane
 - (B) Ethane
 - (C) Propane
 - (D) Isobutane (2-methylpropane)
- 81. But-2-yne is converted to (*E*)-but-2-ene by

$$H_{3}C-C\equiv C-CH_{3} \xrightarrow{H CH_{3}} C=C H_{3}C H$$

- (A) catalytic hydrogenation using Lindlar's catalyst
- (B) using Raney nickel
- (C) copper catalyzed partition reaction with *n*-butane
- (D) reduction using controlled amount of sodium in liquid ammonia

- 82. Cyclic compounds with alternating single and double bonds can be
 - (A) aromatic or antiaromatic
 - (B) aromatic or nonaromatic
 - (C) antiaromatic or nonaromatic
 - (D) aromatic, antiaromatic or nonaromatic
- 83. Which among the following methods is **NOT** a suitable one for the preparation of benzene?
 - (A) Passing ethyne under pressure through an iron tube heated up to 873 K
 - (B) Soda lime distillation of benzoic acid
 - (C) Treatment of chlorobenzene with sodium metal in dry ether
 - (D) Passing phenol in the gaseous state over a heated bed of zinc dust
- 84. Which among the following halides will undergo fastest SN1 solvolysis in water?
 - (A) 2-fluoro-2-methylpropane
 - (B) 2-chloro-2-methylpropane
 - (C) 2-bromo-2-methylpropane
 - (D) 2-iodo-2-methylpropane
- 85. Which among the following methods is **NOT** suitable for selective generation of butan-1-ol?
 - (A) Reaction of butylmagnesium bromide with water
 - (B) Reaction of propylmagnesium bromide with formaldehyde
 - (C) Reaction of ethylmagesium bromide with ethylene oxide
 - (D) Hydroboration of but-1-ene followed by oxidation with hydrogen peroxide in the presence of aqueous sodium hydroxide

86. Predict the major products formed in the acidic hydrolysis of cumene hydroperoxide.

- (A) Phenol and acetone
- (B) Benzoic acid and methanol
- (C) Acetophenone and ethanol
- (D) Phenol and propan-2-ol
- 87. Which of the following nuclides is most radioactive?
 - (A) $^{108}_{47}$ Ag
 - (B) $\frac{66}{30}$ Zn
 - (C) $^{37}_{17}$ Cl
 - (D) $^{31}_{15}P$

88. Which radical can be tested with Nessler's reagent?

- (A) K
- (B) NH_4^+
- (C) Na⁺
- (D) Fe³⁺
- 89. The observed mass of ${}_{26}\text{Fe}^{56}$ is 55.9375 amu. Using the mass of proton and neutron = 1.00732 amu and 1.00866 amu respectively, calculate the mass defect?
 - (A) 0.6234
 - (B) 0.6753
 - (C) 0.5678
 - (D) 0.5126
- 90. The thermal stability of hydrides is in the order of
 - (A) HF > HCl > HBr > HI
 - (B) HF > HI > HCl > HBr
 - (C) HF > HBr > HI > HCl
 - (D) HF < HI < HBr > HCl

- 91. Which complex is called as outer orbital complex?
 - (A) $[Fe(CO)_5]$
 - (B) $[Fe(H_2O)_6]^{2+}$
 - (C) [Ni(CO)₄]
 - (D) $[Fe(CN)_6]^{2-}$
- 92. How many atoms are present in a FCC unit cell?
 - (A) 3
 - (B) 4
 - (C) 2
 - (D) 6

93. How many elements are present in the sixth period of the modern periodic table?

- (A) 18
- (B) 22
- (C) 36
- (D) 32

94. In which of the following pairs, Dipole-induced dipole interaction is present?

- (A) HCl and He atoms
- (B) Cl_2 and CCl_4
- (C) SiF_4 and He atoms
- (D) H_2O and alcohol

95. In which of the following compounds, the maximum covalent character is shown?

- (A) MgCl₂
- (B) FeCl₂
- (C) SnCl₂
- (D) $AlCl_3$

96. Which of the following is Paramagnetic?

- (A) CO
- (B) CN^{-}
- $(C) NO^+$
- (D) O_2

97. Choose the correct formula for borax.

- (A) $Na_2B_4O_7.5H_2O$
- (B) $Na_2B_4O_7.10H_2O$
- (C) $Na_2B_4O_7.3H_2O$
- (D) $Na_2B_4O_7.H_2O$
- 98. Diagonal relationship between beryllium and aluminium is due to the fact that
 - (A) the ionic radius and charge/radius ratio of Be²⁺ is nearly the same as that of Al^{3+} ion.
 - (B) like aluminium, beryllium is readily attacked by acids
 - (C) the chlorides of beryllium and aluminium are not soluble in organic solvents and are strong Lewis bases
 - (D) beryllium and aluminium ions have no tendency to form complexes
- 99. Identify the **CORRECT** statement
 - (A) Sodium carbonate is also called as baking soda
 - (B) Sodium carbonate is a white crystalline solid which exists as a decahydrate, Na₂CO₃.10H₂O
 - (C) Sodium carbonate is generally prepared by Castner-Kellner process
 - (D) Anhydrous sodium carbonate is called as soda lime
- 100. Considering the elements F, Cl, O and N, the correct order of their chemical reactivity in terms of oxidizing property is
 - (A) F > Cl > O > N
 - $(B) \quad F > O > Cl > N$
 - $(C) \quad Cl > F > O > N$
 - (D) O > F > N > Cl

101. If the value of $\lim_{x \to 0} \frac{(1-x)^n - 1}{x}$ is 100, then *n* is equal to

- (A) 100
- (B) -100
- (C) 99
- (D) –99

102. Let f(x) be a polynomial of degree 2 satisfying f(0) = 1, f'(0) = -2 and f''(0) = 6. Then $\int_{-1}^{2} f(x) dx$ is equal to

- -1
- (A) 6
- (B) 0 (C) 9
- (D) 3

103. The domain of the derivative of the function $f(x) = \tan^{-1} x$, if $|x| \le 1$ and

- $f(x) = \frac{1}{2} (|x|-1), \text{ if } |x| > 1, \text{ is}$ (A) $\Box = \{0\}$ (B) $\Box = \{1\}$
- $(\mathbf{B}) \quad \Box = \{\mathbf{I}\}$ $(\mathbf{C}) \quad \Box = \{-1\}$
- (C) \Box (-1,1) (D) \Box -{-1,1}
- 104. The function $f: \Box \{0\} \to \Box$ given by $f(x) = \frac{1}{x} \frac{2}{e^{2x} 1}$ can be made continuous at x = 0 by defining f(0) as
 - (A) 0 (B) 1 (C) 2 (D) -1

105. Rolle's theorem is applicable to the function

- (A) $f(x) = |x|, -1 \le x \le 1$
- (B) $f(x) = \tan x, \ 0 \le x \le \pi$
- (C) $f(x) = \sin^2 x, \ 0 \le x \le \pi$
- (D) $f(x) = x^3 3x + 3, \ 0 \le x \le 1$

106. If
$$\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$$
, then the value of $\cos^{-1} x + \cos^{-1} y$ is

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (C) π (D) $\frac{2\pi}{3}$
- 107. The number of different salads that can be made from cucumber, tomatoes, onions, beetroot and carrots is
 - (A) 16
 - (B) 28
 - (C) 31
 - (D) 32
- 108. The total number of subsets of a finite set *A* has 56 more elements than the total number of subsets of another finite set *B*. The number of elements in the set *A* is
 - (A) 5
 (B) 6
 (C) 7
 (D) 8

109. If $\sqrt{5}$ and $-\sqrt{5}$ are two roots of the polynomial $x^3 + 3x^2 - 5x - 15$, then its third root is

- (A) 3
- (B) -3 (C) 5
- (C) -5 (D) -5

- 110. The value(s) of *p* such that the lines, represented by the pair of linear equations 3x y 5 = 0 and 6x 2y p = 0, be parallel is
 - (A) all real values except 10
 - (B) 10
 - (C) $\frac{5}{2}$ (D) $\frac{1}{2}$
- 111. If $A = [a_{ij}]$ is a symmetric matrix of order 2×2 such that |A| = -15 and c_{ij} represents the cofactor of a_{ij} then the value of $a_{21}c_{12} + a_{22}c_{22}$ is
 - (A) 17
 - (B) 18(C) 19
 - (C) 19 (D) -15
- 112. One ticket is selected at random from 50 tickets numbered 00, 01, 02, . . . 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals
 - (A) $\frac{5}{14}$
 - (B) $\frac{1}{50}$
 - (C) $\frac{1}{7}$ (D) $\frac{1}{14}$
- 113. Let x+8y-22=0, 5x+2y-34=0, 2x-3y+13=0 be the three sides of a triangle. Then the area of the triangle is
 - (A) 19 square unit
 - (B) 36 square unit
 - (C) 42 square unit
 - (D) 72 square unit

- 114. For any two real numbers θ and ϕ , we define $\theta R \phi$ if and only if $\sec^2 \theta \tan^2 \theta = 1$. The relation R is
 - (A) reflexive but not transitive
 - (B) symmetric but not reflexive
 - (C) both reflexive and symmetric but not transitive
 - (D) an equivalence relation

115. Let $f: R \to R$ be a positive increasing function with $\lim_{x\to\infty} \frac{f(3x)}{f(x)} = 1$. Then $\lim_{x\to\infty} \frac{f(2x)}{f(x)} =$ (A) $\frac{3}{2}$ (B) 3 (C) 1 (D) $\frac{2}{3}$

- 116. From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. Then the number of such arrangement is
 - (A) at least 750 but less than 1000
 - (B) at least 1000
 - (C) at least 500 but less than 750
 - (D) less than 500

117. If the imaginary part of $\frac{2z+1}{iz+1}$ is -1, then the locus of the point representing z in the

complex plane is

- (A) a straight line
- (B) a parabola
- (C) a circle
- (D) an ellipse

118. The minimum value of $27 \tan^2 \theta + 3 \cot^2 \theta$

- (A) lies between 1 and 17
- (B) greater than or equal to 18
- (C) less than 18
- (D) lies between 2 and 12

119. If
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$$
, then the value of
 $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is
(A) -1
(B) 0
(C) 1

(D) 3

120. Let x be an integer such that $x^2 - 3x < 4$. Then the number of possible values of x is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

121. The product of all solutions of the equation $(x-2)^2 - 3|x-2| + 2 = 0$ is

- (A) 0
- (B) –2
- (C) 2
- (D) –4

122. If $\log_{0.5} \sin x = 1 - \log_{0.5} \cot x$, then the number of solutions of $x \in [-2\pi, 2\pi]$ is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

- 123. The value of $\sqrt{3}$. cosec 20° sec 20° is equal to
 - (A) 1
 - (B) 3sin 20°
 - (C) 4
 - (D) $4\cos 40^{\circ}$

124. If
$$5\sin\alpha = 7\sin\beta$$
, then $\frac{\tan\left(\frac{\alpha+\beta}{2}\right)}{\tan\left(\frac{\alpha-\beta}{2}\right)}$ is equal to

- (A) 6
- (B) 8
- (C) 10
- (D) 12

125. The minimum value of P = bcx + cay + abz, when xyz = abc is

•

- (A) abc
- (B) 2*abc*
- (C) *3abc*
- (D) 6*abc*

126. If
$$\sqrt{3} + i = (a + ib)(c + id)$$
, then $\tan^{-1}\frac{b}{a} + \tan^{-1}\frac{d}{c}$ is equal to

- (A) $\frac{\pi}{2} + 2n\pi$ for some integer *n*
- (B) $-\frac{\pi}{3} + n\pi$ for some integer *n*

(C) $-\frac{\pi}{6} + 2n\pi$ for some integer *n*

(D)
$$\frac{\pi}{6} + n\pi$$
 for some integer *n*

- 127. If three positive unequal numbers x, y, z are in Harmonic Progression, then
 - (A) $x^{2} + y^{2} > z^{2}$ (B) x - y > z(C) $x^{2} + z^{2} > 2y^{2}$ (D) $x^{2} + y^{2} + z^{2} > 1$
- 128. Let *a* be positive and let *M* and *N* be the arithmetic and geometric means of the roots of $x^2 2ax + a^2$ respectively. Then
 - (A) M = 2N
 - (B) M = -N
 - (C) M = N
 - (D) M = -2N

129. Let
$$y = f(x^3)$$
, $z = g(x^5)$, $f'(x) = \tan x$ and $g'(x) = \sec x$. Then $\frac{dy}{dz}$ is equal to

(A)
$$\frac{3}{5x^2} \cdot \frac{\tan x^3}{\sec x^5}$$

(B) $\frac{5x^2}{3} \cdot \frac{\sec x^5}{\tan x^3}$
(C) $\frac{3x^2}{5} \cdot \frac{\tan x^3}{\sec x^5}$
(D) $\frac{5}{3x^2} \cdot \frac{\sec x^5}{\tan x^3}$

130. Let
$$y = \sin^{-1} \left(\sqrt{x - ax} - \sqrt{a - ax} \right)$$
. Then $\frac{dy}{dx}$ is equal to
(A) $\frac{1}{\sin \sqrt{a - ax}}$
(B) $\sin \sqrt{x} \cdot \sin \sqrt{a}$
(C) $\frac{1}{2\sqrt{x}\sqrt{1 - x}}$
(D) 0

131. If
$$3^x + 3^y = 3^{x+y}$$
, then $\frac{dy}{dx}$ equals

(A) $\frac{3^{x} + 3^{y}}{3^{x} - 3^{y}}$ (B) $\frac{3^{x} + 3^{y}}{1 + 3^{x+y}}$ (C) $\frac{3^{x+y} - 3^{y}}{3^{y}}$ (D) $3^{x-y} \left(\frac{3^{y} - 1}{1 - 3^{x}}\right)$

132. If P(1, 2), Q(4, 6), R(5, 7) and S(a, b) are the vertices of a parallelogram PQRS, then

- (A) a = 2, b = 4(B) a = 3, b = 4
- (C) a = 2, b = 3(D) a = 3, b = 5
- 133. The area of the triangle formed by joining the origin to the points of intersection of the line $\sqrt{5}x + 2y = 3\sqrt{5}$ and the circle $x^2 + y^2 = 10$, is
 - (A) 6 sq units
 - (B) 5 sq units
 - (C) 4 sq units
 - (D) 3 sq units

134. The lines x - y - 2 = 0, x + y - 4 = 0 and x + 3y = 6 meet at the common point

(A) (1, 2)
(B) (2, 2)
(C) (3, 1)
(D) (1, 1)

135. The equation of the chord of the circle $x^2 + y^2 - 4x = 0$, whose mid point is (1, 0), is

- (A) y = 2(B) y = 1
- (D) y = 1(C) x = 2
- (D) x = 1

- 136. One of the diametrical chord of the circle $x^2 + y^2 12x + 4y + 6 = 0$ is
 - (A) x + y = 0
 - (B) x + 3y = 0(C) x = y
 - (C) x = y(D) 3x + 2y = 0
- 137. The equation of the line which is tangent to both the circle $x^2 + y^2 = 5$ and the parabola $y^2 = 40x$ is
 - (A) $2x y \pm 5 = 0$
 - (B) $2x \pm y + 5 = 0$
 - (C) $2x \pm y 5 = 0$
 - (D) $2x + y \pm 5 = 0$
- 138. Let the points (1, 2) and (k, -1) be conjugate points with respect to the ellipse $2x^2 + 3y^2 = 6$. Then the value of k is
 - (A) 2
 - (B) 4
 - (C) 6
 - (D) 8
- 139. If f(x + y, x y) = xy, then the arithmetic mean of f(x, y) and f(y, x) is
 - (A) y
 - (B) *x*
 - (C) 0
 - (D) *xy*
- 140. If f(x) is an odd periodic function with period 2, then f(4) equals
 - (A) –4
 - (B) 4
 - (C) 2
 - (D) 0

141.
$$\lim_{x \to 2} \frac{2^{x} - x^{2}}{x^{x} - 2^{2}}$$
 is equal to
(A) $\frac{\log 2 - 1}{\log 2 + 1}$
(B) $\frac{\log 2 + 1}{\log 2 - 1}$
(C) 1
(D) -1

142. If
$$f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} (\log a)^n$$
, then at $x = 0$, $f(x)$

- (A) has no limit
- (B) is discontinuous
- (C) is continuous but not differentiable
- (D) is differentiable
- 143. Let f(x + y) = f(x)f(y) and $f(x) = 1 + \sin 2x \cdot g(x)$, where g(x) is continuous. Then f'(x) equals
 - (A) f(x) g(0)
 - (B) 2f(x)g(0)
 - (C) 2g(0)
 - (D) *g*(0)
- 144. The area of the triangle formed by a tangent to the curve $2xy = a^2$ and the coordinate axes is
 - (A) $2a^2$
 - (B) a^2
 - (C) $3a^2$
 - (D) $4a^2$

145. $\int \sin^3 x \cdot \cos^2 x \, dx$ is equal to

(A)
$$\frac{\sin^5 x}{5} - \frac{\sin^3 x}{3} + c$$

(B) $\frac{\sin^5 x}{5} + \frac{\sin^3 x}{3} + c$
(C) $\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + c$
(D) $\frac{\cos^5 x}{5} + \frac{\cos^3 x}{3} + c$

146. $\int \frac{\sin(2x)}{1+\cos^2 x} dx$ is equal to

- (A) $-\frac{1}{2}\log(1+\cos^2 x)+c$
- (B) $2\log(1+\cos^2 x)+c$
- (C) $\frac{1}{2}\log(1+\cos 2x)+c$

(D)
$$c - \log(1 + \cos^2 x)$$

147.
$$\int \frac{x^3 + 3x^2 + 3x + 1}{(x+1)^5} dx$$
 is equal to
(A) $-\frac{1}{x+1} + c$
(B) $\frac{1}{5} \log(x+1) + c$
(C) $\log(x+1) + c$
(D) $\tan^{-1} x + c$

148. The solution of the differential equation $\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y\cos y}$ is

(A)
$$y \sin y = x^2 \log x + \frac{x^2}{2} + c$$

(B) $y \cos y = x^2 (\log x + 1) + c$

(C)
$$y \cos y = x^2 \log x + \frac{x^2}{2} + c$$

(D) $y \sin y = x^2 \log x + c$

149. The solution of the differential equation $ydx + (x - y^3)dy = 0$ is

(A) $xy = \frac{1}{3}y^3 + c$ (B) $xy = y^4 + c$ (C) $y^4 = 4xy + c$ (D) $4y = y^3 + c$

150. The ratio in which $\hat{i} + 2\hat{j} + 3\hat{k}$ divides the join of $-2\hat{i} + 3\hat{j} + 5\hat{k}$ and $7\hat{i} - \hat{k}$ is

- (A) 1:2
- (B) 2:3
- (C) 3:4
- (D) 1:4
- 151. A vector perpendicular to the plane containing the points A(1, -1, 2), B(2, 0, -1) and C(0, 2, 1) is
 - (A) $4\hat{i} + 8\hat{j} 4\hat{k}$ (B) $8\hat{i} + 4\hat{j} + 4\hat{k}$ (C) $3\hat{i} + \hat{j} + 2\hat{k}$ (D) $\hat{i} + \hat{j} - \hat{k}$

- 152. Let the angle θ between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x y + \sqrt{\lambda}z + 4 = 0$ be such that $\sin \theta = \frac{1}{3}$. Then the value of λ is
 - (A) $-\frac{4}{3}$ (B) $\frac{3}{4}$ (C) $-\frac{3}{5}$ (D) $\frac{5}{3}$

153. The order of the element $\overline{4}$ in the group $\left(\Box_{11}^*,\Box_{11}\right)$ is

- (A) 1
- (B) 3
- (C) 10
- (D) 11

154. Let a, b, c be the l^{th} m^{th} and n^{th} powers of a GP and all are positive.

- Then $\begin{vmatrix} \log a & l & 1 \\ \log b & m & 1 \\ \log c & n & 1 \end{vmatrix}$ equals
- (A) 0(B) 1
- (C) 2
- (D) 3
- 155. The torque about the point $3\vec{i} \vec{j} + 3\vec{k}$ of a force $4\vec{i} + 2\vec{j} + \vec{k}$ through the point $5\vec{i} + 2\vec{j} + 4\vec{k}$, is
 - (A) $\vec{i} + 2\vec{j} 8\vec{k}$
 - (B) $\vec{i} + 2\vec{j} + 8\vec{k}$
 - (C) $\vec{i} 2\vec{j} 8\vec{k}$

(D)
$$\frac{\vec{i}+2\vec{j}-\vec{k}}{3}$$

156. If $i = \sqrt{-1}$, then the value of $i + i^{22} + i^{23} + i^{24} + i^{25}$ is

- (A) *i* (B) -1 (C) 1
- (D) –*i*

157. If f'(x) = x and f(1) = 2, then f(x) is

(A)
$$-\frac{2}{3}(x\sqrt{x}+2)$$

(B) $\frac{2}{3}(x\sqrt{x}+2)$
(C) $-\frac{1}{2}(x^2+3)$
(D) $\frac{1}{2}(x^2+3)$

158. If $f(x) = x^2$ and $g(x) = \sqrt{x}$, then

- (A) $(g \circ f)(-2) = 2$
- (B) $(f \circ g)(2) = 4$
- (C) $(g \circ f)(2) = 4$
- (D) $(f \circ g)(3) = 6$

159. The value of k, such that the function $f(x) = \begin{cases} kx^2, & x \le 2\\ 3, & x > 2 \end{cases}$ is continuous at x = 2, is

(A) 2
(B) 1.75
(C) 0.75
(D) 2.75

160. The missing vertex of a triangle whose other two vertices

$$(-3, -9), (-1, 6)$$
 and centroid $\left(-\frac{1}{3}, 2\right)$ is

- (A) (3, 9)
- (B) (2, 3)
- (C) (3, 4)
- (D) (4, 3)

161. The function f(x) = |x-1| is not differentiable at

(A) 1 (B) $\frac{3}{4}$ (C) 2 (D) $\frac{1}{3}$

162. If $\omega \neq 1$ be a cube root of unity, then the value of $\tan\left\{\left(\omega^{10} + \omega^{20}\right)\pi + \frac{\pi}{4}\right\}$ is

- (A) 1
- (B) –1
- (C) $\frac{1}{\sqrt{3}}$

(D)

N3

163. The two circles $|z-1-i| = \sqrt{2}$ and $|z| = \sqrt{2}$ intersect at

- (A) no point
- (B) one point
- (C) two points
- (D) four points

164.	In the binomial expansion of $(a-b)^n$, $n \ge 5$, the sum of the 5 th and 6 th terms is zero.
	Then $\frac{a}{b}$ equals
	(A) $\frac{n-5}{6}$
	(B) $\frac{n-4}{5}$
	(C) $\frac{5}{n-4}$
	(D) $\frac{6}{n-5}$

The radius of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and 165. having its centre at (0, 3) is

- (A) 4
- (B) 3
- (C) $\sqrt{12}$
- $\frac{7}{2}$ (D)

The harmonic mean of the roots of the equation $(5+\sqrt{2})x^2 - (4+\sqrt{5})x + (8+2\sqrt{5}) = 0$ is 166.

(A) 2 (B) 4 (C) 6

(D) 8

The point at which the tangent to the curve $y = \sqrt{4x-3} - 1$ has its slope $\frac{2}{3}$ is 167.

- (A) (1, 2)
- (B) (3, 2)
- (C) (2, 3)
- (D) (2, 1)

168. The solution set of the inequality $\frac{x+3}{x-4} \ge 0$ is

- (A) $(-\infty, -3] \cup (4, \infty)$
- (B) $(-\infty, -3] \cup [4, \infty)$
- (C) $(-\infty, -3) \cup (1, \infty)$
- (D) 3 and -4

169. If $f(x) = A(2^x) + B$, where f'(1) = 2 and $\int_0^3 f(x) dx = 7$, then which of the following

statements are not correct?

- (i) $A = \frac{1}{\log 2}$
- (ii) $B = \frac{7}{3(\log 2)^2} \left[(\log 2)^2 1 \right]$

(iii)
$$B = \frac{7}{\log 2}$$

(iv)
$$A = \frac{7}{3(\log 2)^2} \left[(\log 2)^2 - 1 \right]$$

- (A) (i) only
- (B) (i) and (iii)
- (C) All are correct
- (D) (i) and (ii)
- 170. The area of the portion of the circle $x^2 + y^2 = 64$ which is exterior to the parabola $y^2 = 12x$ is equal to

(A)
$$\frac{16}{3}(8\pi + \sqrt{3})$$

(B) $\frac{8}{3}(8\pi + \sqrt{3})$
(C) $\frac{16}{3}(8\pi - \sqrt{3})$
(D) $(8\pi + \sqrt{3})$

171. If
$$\int_{-3}^{2} f(x)dx = 2$$
 and $\int_{2}^{5} [5+f(x)]dx = 9$, then the value of the integral $\int_{5}^{-3} f(x)dx$ is

- (A) 3
- (B) 2
- (C) 5
- (D) 4

172. The relation *R* in the set $A = \{1, 2, 3\}$ is given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is

- (A) symmetric
- (B) asymmetric
- (C) neither symmetric nor transitive
- (D) either symmetric or reflexive

173. The locus of the poles of the focal chords of a parabola is the

- (A) axis
- (B) directrix
- (C) tangent at the vertex
- (D) circle
- 174. The eccentricity of the hyperbola $\frac{\sqrt{1999}}{3}(x^2 y^2) = 1$ is
 - (A) $\sqrt{2}$
 - (B) 2
 - (C) $2\sqrt{2}$
 - (D) $\sqrt{3}$

175. The sum of distances of any point on the ellipse $3x^2 + 4y^2 = 24$ from its foci is

- (A) $8\sqrt{2}$ (B) $4\sqrt{2}$
- (D) $4\sqrt{2}$
- (C) $24\sqrt{2}$
- (D) $16\sqrt{2}$

- 176. Two dice are thrown. The probability that the numbers appeared have a sum 8 if it is known that the second dice always exhibits 4, is
 - (A) $\frac{5}{6}$ (B) $\frac{6}{5}$ (C) $\frac{1}{6}$ (D) $\frac{2}{3}$

177. Which of the following is not a group?

- (A) $(Z_n, +_n)$
- (B) (Z, +)
- (C) (Z, .)
- (D) (R, +)

178. If the value of mode and mean is 60 and 66 respectively, then the value of median is

- (A) 60
- (B) 64
- (C) 68
- (D) 63

179. The function
$$f(x) = \frac{\log_e(\pi + x)}{\log_e(e + x)}$$
 is

(A) increasing on $(0,\infty)$

(B) decreasing on
$$\left(0, \frac{\pi}{e}\right)$$
, increasing on $\left(\frac{\pi}{e}, \infty\right)$

- (C) decreasing on $(0,\infty)$
- (D) increasing on $\left(0, \frac{\pi}{e}\right)$, decreasing on $\left(\frac{\pi}{e}, \infty\right)$

180. The integrating factor of the differential equation $\cos x \frac{dy}{dx} + y \sin x = 1$ is

- (A) $\sin x$
- (B) $\cos x$
- (C) $\tan x$
- (D) $\sec x$
- 181. The circles $x^2 + y^2 10x + 16 = 0$ and $x^2 y^2 = r^2$ intersect each other in two distinct points if
 - (A) r < 2
 - (B) r > 8
 - (C) 2 < r < 8
 - (D) $2 \le r \le 8$
- 182. Suppose $A_1, A_2, ..., A_{30}$ are thirty sets, each with five elements and $B_1, B_2, ..., B_{30}$ are *n* sets each with three elements. Let $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j = S$. If each element of *S* belongs to exactly ten of the A_i 's and exactly nine of the B_j 's then n =
 - (A) 45
 - (B) 35
 - (C) 40
 - (D) 25

183. The function $f(x) = \sec\left[\log\left(x + \sqrt{1 + x^2}\right)\right]$ is

- (A) even
- (B) odd
- (C) constant
- (D) neither even nor odd

184. A solution of the equation |z|-z=1+2i is

(A)
$$\frac{3}{2} - 2i$$

(B) $\frac{3}{2} + 2i$
(C) $2 - \frac{3}{2}i$
(D) $2 + \frac{3}{2}i$

185. The equation $|z-1|^2 + |z+1|^2 = 4$ represents on the Argand plane

- (A) a straight line
- (B) an ellipse
- (C) a circle with centre origin and radius 2
- (D) a circle with centre origin and radius unity

186. If A is a singular matrix, then *adj* A is

- (A) non-singular
- (B) singular
- (C) symmetric
- (D) antisymmetric

187. The determinant $\begin{vmatrix} xp+y & x & y \\ yp+z & y & z \\ 0 & xp+y & yp+z \end{vmatrix} = 0$ if

- (A) x, y, z are in A.P
- (B) x, y, z are in G.P
- (C) x, y, z are in H.P
- (D) xy, yz, zx are in A.P
- 188. A telegraph has 5 arms and each arm is capable of 4 distinct positions, including the position of rest. The total number of signals that can be made is
 - (A) 473
 - (B) 1023
 - (C) 1173
 - (D) 423

- 189. A club consists of members whose ages are in A.P, the common difference being 3 months. If the youngest member of the club is just 7 years old and the sum of the ages of all the members is 250 years, then the number of members in the club is
 - (A) 15
 - (B) 25
 - (C) 20
 - (D) 30

190.
$$\lim_{x \to 5} \frac{x^2 - 9x + 20}{x - [x]}$$

- (A) is 1
- (B) is 0
- (C) does not exist
- (D) cannot be determined

191. If
$$f(9) = 0$$
 and $f'(9) = 1$, then $\lim_{x \to 9} \frac{3 - \sqrt{f(x)}}{3 - \sqrt{x}}$ is equal to

- (A) 0
- (B) 1
- (C) -1
- (D) 3
- 192. Let $f(x+y) = f(x) \cdot f(y)$ for all x, y where $f(0) \neq 0$. If f(5) = 2 and f'(0) = 3, then f'(5) is equal to
 - (A) 6
 - (B) 0
 - (C) 1
 - (D) -1

193. The shortest distance of the point (0, 0) from the curve $y = \frac{1}{2} (e^x + e^{-x})$ is

- (A) 2
- (B) 1
- (C) 3
- (D) 0

194. A determinant is chosen at random from the set of all determinants of order 2 with elements 0 or 1 only. The probability that the value of the determinant chosen is positive is

(A)
$$\frac{16}{81}$$

(B) $\frac{7}{16}$
(C) $\frac{3}{16}$
(D) $\frac{16}{3}$

195. If \vec{a} is a unit vector and $(\vec{x} + \vec{a}).(\vec{x} - \vec{a}) = 24$, the $|\vec{x}|$ must be

- (A) 3
- (B) 4
- (C) 5
- (D) 6
- 196. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{5}$ and 4 respectively and $\vec{a}.\vec{b} = 2\sqrt{5}$ is

197. The length of perpendicular from the point $\left(1,\frac{3}{2},2\right)$ to the plane 2x - 2y + 4z + 5 = 0 is

- (A) $\sqrt{3}$
- (B) $\sqrt{6}$
- (C) $\sqrt{5}$
- (D) $\sqrt{7}$

- 198. P is a point on the line segment joining the points A(3, 2, 1) and B(6, 2, -2). If the x- coordinate of P is 5, then the z- coordinate of P is
 - (A) –2
 - (B) 1
 - (C) -1
 - (D) 2
- 199. The probability of *A* and *B* solving a problem correctly is $\frac{1}{3}$ and $\frac{1}{4}$ respectively. If the probability of their making a common error is 1/20 and they obtain the same answer, then the probability of their answer to be correct is
 - (A) $\frac{1}{12}$ (B) $\frac{1}{40}$ (C) $\frac{13}{120}$ (D) $\frac{10}{13}$
- 200. A pair of dice is thrown 4 times. If getting a doublet is considered to be a success, the probability of 2 successes is

KEY													
SI	Ke												
No.	У												
1	D	31	В	61	С	91	В	121	Α	151	В	181	С
2	С	32	Α	62	В	92	В	122	В	152	D	182	А
3	D	33	С	63	А	93	D	123	С	153	С	183	А
4	С	34	С	64	В	94	А	124	Α	154	Α	184	А
5	Α	35	С	65	В	95	D	125	С	155	Α	185	D
6	С	36	D	66	В	96	D	126	D	156	Α	186	В
7	В	37	Α	67	С	97	В	127	С	157	D	187	В
8	С	38	В	68	С	98	А	128	С	158	Α	188	В
9	D	39	Α	69	D	99	В	129	Α	159	C	189	В
10	В	40	Α	70	С	100	В	130	C	160	Α	190	С
11	Α	41	В	71	С	101	В	131	D	161	Α	191	В
12	Α	42	С	72	А	102	С	132	C	162	Α	192	Α
13	В	43	В	73	D	103	D	133	В	163	С	193	В
14	В	44	D	74	В	104	В	134	C	164	В	194	С
15	Α	45	D	75	D	105	C	135	D	165	Α	195	С
16	Α	46	D	76	В	106	В	136	В	166	В	196	В
17	С	47	D	77	В	107	С	137	В	167	В	197	С
18	С	48	Α	78	С	108	В	138	С	168	Α	198	А
19	В	49	Α	79	D	109	В	139	C	169	D	199	D
20	D	50	С	80	В	110	Α	140	D	170	С	200	А
21	С	51	В	81	D	111	D	141	Α	171	D		
22	С	52	В	82	D	112	D	142	D	172	С		
23	Α	53	C	83	C	113	А	143	В	173	В		
24	В	54	В	84	D	114	D	144	В	174	Α		
25	С	55	В	85	Α	115	С	145	C	175	В		
26	D	56	A	86	А	116	В	146	D	176	С		
27	Α	57	D	87	А	117	С	147	Α	177	С		
28	D	58	D	88	В	118	В	148	D	178	В		
29	D	59	С	89	D	119	В	149	С	179	С		
30	A	60	D	90	А	120	D	150	А	180	D		
X													