Subject Code : 613 • Section Code : -Select- • Difficulty: 1 •

Subject Code	Q Id	Questions	Answer Key
613	151	If A is the amplitude of oscillation, the distance moved by the particle in simple harmonic motion in one time period is (A) A (B) 2A (C) zero (D) 4A 	(D)
613	152	Two bodies of mass m and 4 m are moving with equal linear momentum. The ratio of their kinetic energy is (A) 4 : 1 (B) 1 : 4 (C) 1 : 2 (D) 1 : 1 	(B)
613	153	 A particle executes simple harmonic motion represented by y = 0.02 sin 100t. The amplitude and frequency of motion are (A) 0.02 m and 100 Hz (B) 0.01 m and 50 Hz (C) 0.02 m and (50/π)Hz (D) 0.02 m and (100/π) Hz 	(C)
613	154	 A man is standing in a lift falling freely under gravity and releases a ball from his hand. As seen by him, the ball (A) falls down (B) remains stationary (C) goes up (D) executes simple harmonic motion 	(B)
613	155	When the source and the listener move in the same direction with a speed equal to the half of the speed of sound, the change in frequency of the sound is (A) zero (B) 0.25 (C) 0.5 (D) 0.75 	(A)
613	156	An oil drop falling freely under the influence of gravity alone experiences a resistive force proportional to its (A) mass (B) charge (C) speed (D) size	(C)
613	157	The change in frequency due to Doppler effect does not depend on (A) the speed of the source (B) the speed of the observer	(D)

		(C) the frequency of the source(D) the separation between the source and the observer	
613	158	Which one of the following properties show that light is a transverse wave? (A) Interference (B) Reflection (C) Polarization (D) Diffraction	(C)
613	159	The wave fronts of light coming from a distant source of unknown shape are nearly (A) plane (B) elliptical (C) spherical (D) cylindrical 	(A)
613	160	Two sources are said to be coherent if they produce waves (A) of equal wavelength (B) of equal velocity (C) having same shape of wave front (D) having a constant phase difference	(D)
613	161	Total internal reflection can take place only if (A) light goes from optically rarer medium to optically denser medium (B) light goes from optically denser medium to rarer medium (C) the refractive indices of the two media are close to each other (D) the refractive indices of the two media are widely different	(B)
613	162	The dimensions of linear momentum is (A) MLT–1 (B) ML2T–1 (C) MLT–2 (D) ML–1T–1	(A)
613	163	Viscosity is a property of (A) liquids only (B) solids only (C) liquids and solids (D) liquids and gases	(D)
613	164	For a gas, the root mean square velocity of molecules at 800 K is (A) four times the value at 200 K (B) two times the value at 200 K (C) half the value at 800 K (D) same as at 200 K	(B)

613	165	The Van der Waals equation of state for a real gas is (A)	(A)
		$\left(P + \frac{a}{v^2}\right)(V - b) = RT$	
		(B) PV = RT	
		(C) $\left(P - \frac{a}{V^2}\right)(V + b) = RT$	
		(D) $\left(P - \frac{a}{V^2}\right)(V - b) = RT$	
		The efficiency of Carnot engine working between 127oC and 27oC is	
		(A) 1	
613	166	(B) 0.5	(C)
		(C) 0.25	
		(D) 0.75	
		In a reversible process, the entropy of the system	
		(A) increases	
613	167	(B) remains constant	(B)
		(C) is zero	
		(D) decreases	
		The particles obeying Maxwell-Boltzmann statistics are	
		(A) identical and indistinguishable	
613	168	(B) identical but distinguishable	(B)
		(C) photons	
		(D) fermions	
		The spin of the photon is	
		(A) zero	
		(B)	
		$\frac{1}{2}$ h	
613	169	(C)	(C)
		1 ħ	
		(D)	
		$\frac{3}{2}$ b	
		Pitch of a sound refers to	
		(A) amplitude	
613	170	(B) phase	(C)
		(C) frequency	
		(D) loudness	
	171	Resolving power of a telescope is	(B)

		(A) directly proportional to the wavelength of the light used	
		(B) inversely proportional to wavelength of the light used	
		(C) inversely proportional to diameter of the objective	
		(D) inversely proportional to square of the wavelength of light used	
		In Rayleigh scattering of light, the intensity of the scattered light is proportional to	
		(A) $1/\lambda 4$	
613	172	(B) $1/\lambda 2$	(A)
		(C) λ2	
		(D) λ3	
		In a doubly refracting crystal, the axis along which the extraordinary ray (E-ray) and ordinary ray (O-ray) have equal velocities is called	
		(A) polarising axis	-
613	173	(B) principal axis	(D)
		(C) non-polarizing axis	
		(D) optic axis	
		The postulates of special theory of relativity are applicable only to	
		(A) stationary frame of reference	
613	174	(B) inertial frame of reference	(B)
		(C) non-inertial frame of reference	
		(D) accelerated frame of reference	
		Heisenberg's Uncertainty principle is not applicable to the following pairs of physical variables	
		(A) position and linear momentum	
613	175	(B) energy and time	(C)
		(C) force and acceleration	
		(D) angular displacement and angular momentum	
		Two wave functions $\psi_1(x)$ and $\psi_2(x)$ are said to be orthogonal if	
		(A)	
		$\int \psi_1^*(x)\psi_2(x)dx = 1$	
		(B)	
613	176	$\int \Psi_1^*(x)\Psi_2(x)dx = 0$	(B)
		(C)	
		$\int \psi_1^*(x)\psi_2(x)dx \neq$	
		(D)	
		$\int \psi_1(x)\psi_2(x)dx = 0$	

		(A) 0 (B)	
		$\frac{1}{2}hv$	
		(C)	
		$\frac{3}{2}hv$	
		(D)	
		hv	
		The maximum value allowed for orbital quantum number for a given principle quantum number n is	
		(A) n	
613	178	(B) n-1	(B)
		(C) n-2	
		(D) n+1	
		In normal Zeeman effect, the spectral line of an atom in a magnetic field is split into	
		(A) 2 component lines	
613	179	(B) 3 component lines	(B)
		(C) 4 component lines	
		(D) more than 4 component lines	
		The yellow D-lines of sodium spectrum correspond to	
(12	100	(A) sharp series	
613	180	(B) diffuse series	(C)
		(C) principal series(D) fundamental series	
		On increasing the number of electrons striking the anode of an X-ray tube, which of the following characteristics of X-rays increase?	
		(A) Frequency	
613	181	(B) Wavelength	(C)
		(C) Intensity	
		(D) Quality	
		In an X-ray tube, the quality (penetrating power) of X-rays produced is determined by	
		(A) magnitude of the filament current	
613	182	(B) magnitude of the filament voltage	(D)
		(C) size of the cathode	
		(D) potential difference between the cathode and the anode	
613	183	Which one of the following molecules does not possess a permanent electric dipole moment?	(A)
		(A) H2	
		(B) NO	
		(C) HCl	
		(D) CO	

		In which of the following bonding type, bonding is formed by the transfer of electrons from one atom to another	
		(A) ionic bonding	
613	184	(B) covalent bonding	(A)
		(C) Van der Waals bonding	
		(D) metallic bonding	
		Susceptibility of a diamagnetic material is	
		(A) zero	
613	185	(B) very large	(C)
		(C) small and negative	
		(D) small and positive	
		Fermi level is defined as	
		(A) lowest filled level at 0 K	
613	186	(B) lowest filled level at room temperature	(A)
		(C) highest occupied level at 0 K	
		(D) highest occupied level at room temperature	
		Quantum of lattice vibration energy is called	
		(A) photon	
613	187	(B) phonon	(B)
		(C) solitron	
		(D) meson	
		A pure semiconductor is essentially an insulator at	
		(A) 0 K	
613	188	(B) 100 K	(A)
		(C) 0oC	
		(D) 273 K	
		In the case of an intrinsic semiconductor, Fermi level	
		(A) does not exist	
613	189	(B) lies close to the conduction band	(D)
		(C) lies close to the valence band	
		(D) lies in the middle of the energy band gap	
		Atoms with nuclear spin $I = \clubsuit$ cannot have	
		(A) magnetic interaction	
613	190	(B) electric quadruple interaction	(B)
		(C) fine structure	
		(D) hyperfine structure	
613	191	Heisenberg uncertainty principle applies to	(D)
		(A) any pair of dynamical variables	

		(B) x and px only(C) a pair of dynamical variables, the operators corresponding to which commute(D) a pair of dynamical variables, the operators corresponding to which do not commute	
613	192	A state of two electrons (1 and 2) with effective spin S=1 and Ms = 1 is represented by (A) $\alpha(1)\beta(2)$ (B) $\alpha(1)\alpha(2)$ (C) $\beta(1)\alpha(2)$ (D) $\beta(1)\beta(2)$	(B)
613	193	The change in internal energy of the gas is directly proportional to (A) the change in volume (B) change in temperature (C) change in pressure (D) change in chemical potential	(B)
613	194	 Which one of the following is not an exact differential? (A) dQ (Q = heat absorbed or released) (B) dU (U = internal energy) (C) dS (S = entropy) (D) dF (F = free energy) 	(A)
613	195	 The existence of a given substance in more than one crystalline forms possessing different physical properties is known as (A) ♦ isomorphism (B) polymorphism (C) ♦♦ triple point (D) anisotropy 	(B)
613	196	The phenomenon of diffusion occurs in (A) gases only (B) gases and liquids only (C) liquids only (D) solids, liquids and gases	(D)
613	197	 A JFET differs from MOSFET mainly because (A) of the power rating (B) the MOSFET has two gates (C) the JFET has a pn junction (D) MOSFET does not have a physical channel 	(C)
613	198	Light Emitting Diode (LED) emits visible light when its (A) pn-junction is reverse biased (B) holes and electrons recombine (C) pn-junction becomes hot	(B)

		(D) depletion region widens	
		A solar cell operates on the principle of	
		(A) diffusion of charge carriers	
613	199	(B) recombination of charge carriers	(C)
		(C) photovoltaic action	
		(D) injection of current	
		Accuracy of an experiment expresses	
		(A) correctness of the experiment	
613	200	(B) deviation of the measured value from the predicted value	(A)
		(C) feasibility of the experiment	
		(D) reproducibility of the experiment	
		Pirani gauge for the measurement of low pressure is based on the principle of measurement of	
		(A) humidity of the medium	
613	201	(B) electrical conductivity of the medium	(C)
		(C) thermal conductivity of the medium	
		(D) dielectric property of the medium	
		For an ideal operational amplifier, the input current is	
		(A) infinite	
613	202	(B) zero	(B)
		(C) large	
		(D) of the order of mA	
		Spin multiplicity of the state 2D3/2 is	
		(A) 2	
613	203	(B) 1	(A)
		(C) 3/2	
		(D) 3	
		Which one of the following molecules does not exhibit a pure rotational spectrum?	
		(A) HCl	
613	204	(B) CO	(D)
		(C) OCS	
		(D) H2	
		The splitting of the spectral lines of an atom in the presence of an electric field is called	
		(A) Zeeman effect	
613	205	(B) Raman effect	(C)
		(C) Stark effect	
		(D) Paschen-Back effect	
613	206	Which one of the following is the weakest kind of bonding in solids?	(C)

		(A) Ionic	
		(B) Covalent	
		(C) Van der Waals	
		(D) Metallic	
		In a crystal lattice, an electron occupies a negative ion vacancy in the lattice. The lattice defect is then	
		(A) interstitial	
613	207	(B) colour centre	(B)
		(C) Schottky defect	
		(D) Frenkel defect	
		In the case of a metal, the resistivity	
		(A) increases with temperature	
613	208	(B) decreases with temperature	(A)
		(C) is independent of temperature	
		(D) decreases initially with temperature but increases with further increase in temperature	
		Nuclear forces are	
		(A) short range, attractive and charge independent forces	
613	209	(B) short range, attractive and charge dependent forces	(A)
		(C) long range, repulsive and charge independent forces	
		(D) long range, repulsive and charge dependent forces	
		The resolving power of a grating is	
		(A) directly proportional to the number of lines N	
613	210	(B) inversely proportional to N	(A)
		(C) independent of N	
		(D) directly proportional to N2	
		The ratio of proton mass to electron mass is	
		(A) 1.837	
613	211	(B) 1837	(B)
		(C) 18.37	
		(D) 183.7	
		The reciprocal lattice of bcc lattice is	
		(A) bcc lattice itself	
613	212	(B) hcp lattice	(C)
		(C) fcc lattice	
		(D) simple cubic lattice	
613	213	Glass is a	(B)
		(A) crystalline solid	
		(B) amorphous solid	

		(C) liquid crystalline material	
		(D) polymeric material	
613	214	The rank of the matrix $\begin{pmatrix} 7 & -1 \\ 2 & 1 \end{pmatrix}$ is (A) 9 (B) 2 (C) 1 (D) 5	(B)
613	215	If $m\vec{i} + 2\vec{j} + \vec{k}$ and $4\vec{i} - 9\vec{j} + 2\vec{k}$ are perpendicular to each other, then m is (A) -4 (B) 8 (C) 4 (D) 12	(C)
613	216	If $m\vec{i} + 2\vec{j} + \vec{k}$ and $4\vec{i} - 9\vec{j} + 2\vec{k}$ are perpendicular to each other, then m is (A) 2coshq (B) coshq (C) 2sinhq (D) sinhq	(A)
613	217	The axis of the parabola $y2 = 4x$ is (A) $x = 0$ (B) $y = 0$ (C) $x = 1$ (D) $y = 1$	(B)
613	218	The order and degree of the differential equation $\frac{d^{3}y}{dx^{3}} + \left(\frac{d^{2}y}{dx^{2}}\right)^{3} + \left(\frac{dy}{dx}\right)^{5} + y = 7 \text{ are}$ (A) 3 and 1 (B) 1 and 3 (C) 3 and 5 (D) 2 and 3	(C)
613	219	 When a p-n diode is reverse biased, (A) there is some current due to majority carriers (B) there is some current due to minority carriers (C) there is some current due to both majority and minority carriers but in opposite directions (D) there will be no current at all 	(B)

613	220	A pentavalent impurity is added to silicon	(B)
		(A) to increase the energy band gap	
		(B) to create an n-type semiconductor	
		(C) to create a p-type semiconductor	
		(D) to decrease the energy band gap	
		A JFET is a	
		(A) current controlled device	
613	221	(B) voltage controlled device	(B)
		(C) charge controlled device	
		(D) light controlled device	
		The input impedance of an ideal operational amplifier is	
		(A) zero	
613	222	(B) low	(C)
		(C) infinity	
		(D) high	
		A Zener diode is used for voltage regulation in	
		(A) forward bias	
613	223	(B) reverse bias	(B)
		(C) no bias is needed	
		(D) it cannot be used for voltage regulation	
		A certain operational amplifier has an open loop gain of 200,000 and a common-mode gain of 0.8. Then the common-mode rejection radio (CMRR) of this operational amplifier is	
		(A) 250000	
613	224	(B) 125000	(A)
		(C) 0.4	
		(D) 4.0E-6	
		Which of the following gates are known as universal gates?	
		(A) OR Gate and AND gate	
613	225	(B) OR gate and EXOR gate	(D)
		(C) AND gate and NOT gate	
		(D) NAND gate and NOR gate	
		As the temperature increases, the resistivity	
		(A) increases for metals and semiconductors but decrease for insulators	
613	226	(B) decreases for metals and semiconductors but increases for insulators	(C)
		(C) increases for metals but decreases for semiconductors and insulators	
		(D) decreases for metals but increases for semiconductors and insulators	
613	227	A vector is solenoidal if	(B)
		(A)	

		$\nabla \times F = 0$	
		(B) $\nabla \cdot F = 0$	
		(C) $\nabla \times \nabla \times F = 0$	
		(D) $\nabla^2 \times F = 0$	
613	228	A car undergoes a constant acceleration of 6 m/s2 starting from rest. In the first second it travels (A) 6 m (B) 16 m (C) 3 m (D) 36 m	(C)
613	229	A 1 kg mass has a potential energy of 1 Joule relative to the ground when it is at a height of (A) 1 m (B) 0.102 m (C) 9.8 m (D) 32.0 m	(B)
613	230	 A car moving at 20 m/s along a straight road with its 500 Hz horn sounding. You are standing at the side of the road. What frequency will you hear as the car is approaching? (A) 500 Hz (B) 472 Hz (C) 531 Hz (D) 513 Hz 	(C)
613	231	A thermo dynamical process is explained by means of the work done $W = \int_{v1}^{v2} P dV$ for $V_1 < V_2$, the process is called (A) isobaric process (B) isothermal process (C) isentropic process (D) adiabatic process	(A)
613	232	The average kinetic energy of the molecules in a gas is given by (A) $E = \frac{3PV}{2N}$ (B) $E = \frac{3P}{2N}$ (C) $E = \frac{3NK}{2}$	(A)

		(D) $E = \frac{3KP}{2}$	
613	233	The nitrogen liquid boils at 77 K at atmospheric pressure. Which can be a valid suggestion to keep it in liquid state at higher temperature. (A) increase the pressure (B) increase the volume (C) decrease the pressure (D) maintain constant volume 	(A)
613	234	Energy is absorbed or liberated as heat when a current flows along an unequally heated conductor depending upon the direction of flow of the current. The effect is called (A) Thomson effect (B) Peltier effect (C) Seebeck effect (D) Stark effect	(A)
613	235	The primary circuit of a potentiometer consists of a storage cell of e.m.f. 2 Volts with negligible internal resistance. If the potentiometer wire is 500 cm and its resistance is 5 Ohms, the length of the wire required to balance a Daniel cell of e.m.f 1.08 Volts is given by (A) 27 cm (B) 270 cm (C) 2.7 cm (D) 0.27 cm	(B)
613	236	For soft magnetic material the magnetic susceptibility is (A) small (B) large (C) zero (D) negative	(B)
613	237	Which of the figures shown below represents the exclusive-NOR gate? $ \begin{array}{cccc} $	(B)
613	238	Quincke's method is used to find the magnetic susceptibility of (A) solids (B) solids and Liquids (C) liquids (D) plasmas	(C)

613	239	Positronium is a bound state of	(B)
		(A) a proton and a positron	
		(B) an electron and a positron	
		(C) proton and an electron	
		(D) photon	
		Which of the following is not a moderator in an atomic pile?	
		(A) heavy water	
613	240	(B) graphite	(D)
		(C) beryllium	
		(D) boron	
		Mirage effect is due to variation in	
		(A) the refractive index of the medium	
613	241	(B) the wavelength of light	(A)
		(C) the energy of light	
		(D) fluctuations of the size of the object	
		Polarization of waves can be best understood due to	
		(A) wave nature of light	
613	242	(B) particle nature of light	(A)
		(C) Both (A) and (B)	
		(D) dispersion	
		The existence of electromagnetic waves was confirmed experimentally by	
		(A) Hertz	
613	243	(B) Maxwell	(A)
		(C) Huygens	
		(D) Planck	
		White light illuminates a single slit of width 'x'. The first minimum for red light (λ =650 nm) occurs at θ =150. The width 'x' is then	
		(A) 430 nm	
613	244	(B) 650 nm	(C)
		(C) 2510 nm	
		(D) 1255 nm	
		The number of photons emitted per second from a 1 Watt Ar-ion laser operating at 488 nm is approximately	
		(A) 10.23 \$ 1019	
613	245	(B) 2.46 \$ 1018	(B)
		(C) 10.23�1017	
		(D) 2.46 \$ 1015	
613	246	In Young's double slit experiment with a Helium-Neon laser beam of wavelength 632 nm, the first interference maximum will occur when	(C)
		(A) path difference is 948 nm	

		 (B) path difference is 316 nm (C) phase difference is2 π radians (D) phase difference is 2π radians 	
613	247	 The change of orientation of the molecule takes place in region of electromagnetic spectrum (A) X-ray (B) Visible (C) γ-ray (D) Microwave 	(D)
613	248	de Broglie waves can be regarded as waves of (A) energy (B) electric charge (C) momentum (D) probability	(D)
613	249	Wave behavior is exhibited by (A) only particles at rest (B) only moving particles (C) only charged particles (D) all particles	(B)
613	250	The velocity of the wave packet that corresponds to a moving particle is (A) lower than the particle velocity (B) equal to the particle velocity (C) higher than the particle velocity (D) zero	(B)
613	251	For a perfect black body, the absorptive power is (A) 0 (B) ∞ (C) 1 (D) 0.5	(C)
613	252	 A hydrogen atom is in its ground state when its electron is (A) at rest (B) inside the nucleus (C) in its lowest energy level (D) in its highest energy level 	(C)
613	253	A photon is emitted by an atom when one of the electrons of the atom (A) leaves the atom (B) collides with another of its electrons	(C)

		(C) shifts to a lower energy level	
		(D) shifts to a higher energy level	
		The number of atoms per primitive unit cell is	
		(A) 1	
613	254	(B) 2	(A)
		(C) 3	
		(D) 4	
		The number of allowed orientations for orbital angular momentum for the state with	
		(A) 0	
613	255	(B) 1	(D)
		(C) 2	
		(D) 3	
		Young's modulus of a perfectly rigid body is	
		(A) zero	
613	256	(B) unity	(C)
		(C) infinity	
		(D) more than zero but less than infinity	
		Decibel is	
		(A) a musical instrument	
613	257	(B) a musical note	(C)
		(C) a measure of sound level	
		(D) the wavelength of noise	
		A p-n junction is formed by	
		(A) the recombination of electrons and holes	
613	258	(B) ionization	(C)
		(C) the boundary of a p-type and an n-type semiconductors	
		(D) heating	
		Curie temperature is the temperature above which	
		(A) a paramagnetic material becomes diamagnetic	
613	259	(B) a ferromagnetic material becomes diamagnetic	(D)
		(C) a paramagnetic material becomes ferromagnetic	
		(D) a ferromagnetic material becomes paramagnetic	
		The process of superimposing signal frequency on the carrier wave is known as	
		(A) transmission	
613	260	(B) reception	(C)
		(C) modulation	
		(D) detection	

613	261	A simple isolated lattice vacancy is known as	(A)
		(A) Schottky defect	
		(B) Frenkel defect	
		(C) Fink defect	
		(D) Laue defect	
		Equivalent matrices are obtained by	
		(A) taking inverses	
613	262	(B) taking transposes	(D)
		(C) taking adjoints	
		(D) taking finite number of elementary transformations.	
		The distance–time relationship of a moving body is given by $y = F(t)$ then the acceleration of the body is the	
		(A) gradient of the velocity versus time graph	
613	263	(B) gradient of the distance versus time graph	(A)
		(C) gradient of the acceleration versus time graph	
		(D) gradient of the velocity versus distance graph	
		1	
		An object dropped from the sky follows the law of motion $x = \frac{1}{2}gt^2$	
		$(g = 9.8 \text{m/sec}^2)$. Then the acceleration of the object	
613	264	(A) varies with time	(B)
		(B) constant with time	
		(C) varies with velocity	
		(D) varies with square of distance	
		A trivalent impurity is added to silicon to	
		(A) to increase the energy band gap	
613	265	(B) to create an n-type semiconductor	(C)
		(C) to create a p-type semiconductor	
		(D) to decrease the energy band gap	
		If the voltage in the given circuit below is reduced to half, what would be the current equal to?	
(10)		$18 V = \frac{1}{T_{-}}$	
613	266		(B)
		(A) 10 mA	
		(B) 30 mA	
		(C) 60 mA	
		(D) 90 mA	

(D)	The output impedance of an ideal operational amplifier is	613 267
	(A) high	
	(B) infinity	
	(C) low	
	(D) zero	
	A flip-flop has	
	(A) one stable state	
(C)	(B) no stable states	613 268
	(C) two stable states	
	(D) None of the above	
	Observe the input and output wave forms of the following device and identify the device	
(D)	$ \begin{array}{c} V_m \\ 0 \\ -V_m \end{array} $ Device $ \begin{array}{c} V_m \\ 0 \\ -\pi \\ 2\pi \end{array} $	613 269
(D)	(A) Half-wave rectifier	015 209
	(B) Hartley Oscillator	
	(C) R-C coupled amplifier	
	(D) Full-wave rectifier	
	The rms output voltage of a BJT amplifier is 5 V for an input rms voltage of 500 mV. The voltage gain of this amplifier is	
	(A) 10	
(A)	(B) 7.07	613 270
	(C) 14.14	
	(D) 100	
	The circuit shown in the figure is a	
(D)		613 271
	(A) low-pass filter	
	(B) integrator	
	(C) half-wave rectifier	
	(D) high-pass filter	
	An emitter bypass capacitor is used in a CE amplifier to eliminate the	
	(A) AC component of output	
(C)	(B) DC component of output	613 272
	(C) AC drop across RE	
	(D) DC drop across RE	
	(B) DC component of output(C) AC drop across RE	613 272

613	273	Two capillary tubes of different diameter are placed vertically in water. The rise of water is	(A)
		(A) greater in tube of smaller diameter	
		(B) greater in tube of larger diameter	
		(C) same in both	
		(D) zero in both	
		The terminal velocity of a spherical body of radius r falling through a viscous fluid is proportional to	
		(A) 1/r2	
613	274	(B) 1/r	(D)
		(C) r	
		(D) r2	
		What is the Kilowatt-hour consumption of a 40 W lamp if it remains ON for 1750 hours?	
		(A) 43.75	
613	275	(B) 70	(B)
		(C) 43750	
		(D) 70000	
		Constant volume Hydrogen thermometer works on the basis of	
		(A) Charles's law	
613	276	(B) Boyle's law	(A)
		(C) Van der Waals equation	
		(D) Mayor's relation.	
		A cycle tier bursts suddenly. It is a good example for	
		(A) isentropic process	
613	277	(B) isobaric process	(A)
		(C) isothermal process	
		(D) constant volume process	
		The unit Jm–1s–1k–1 is the unit for	
		(A) thermal conductivity	
613	278	(B) specific heat	(A)
		(C) entropy	
		(D) compressibility	
		According to Claussius, the energy of the universe is constant but its is increasing.	
		(A) entropy	
613	279	(B) enthalpy	(A)
		(C) Gibb's free energy	
		(D) efficiency	
613	280	A solenoid has an inductance of 2 Henrys and a resistance of 1 Ohm. The current to grow to 2/3 of the steady	(D)
=	100	state value, it takes time nearly	()
		(A) 20 min	

		(B) 2 sec	
		(C) 2 min	
		(D) 22 sec	
		The thermo electric powers of copper and iron when coupled with lead are $10.8 \ \mu$ V and $3.6 \ \mu$ V respectively at 100oC. The emf developed in an iron-copper couple when the cold and hot junctions are at 50oC and 150oC respectively is	
613	281	(A) 720 μV	(A)
015	201	(B) 72 μV	(11)
		(C) 7.2 µV	
		(D) 0.72 µV	
		A galvanometer of resistance 100 Ohms is shunted with a resistance to lower its sensitiveness 100 times. The value of shunt resistance is	
613	282	(A) 1.01 Ohms	
015	202	(B) 10 Ohms	(A)
		(C) 100 Ohms	
		(D) 10.1 Ohms	
		For hard magnetic materials, the permeability is	
		(A) large	
613	283	(B) small	(B)
		(C) zero	
		(D) negative	
		The susceptibility of a substance given by $\chi m = Cm / (T-\theta)$ represents	
		(A) Curie's law	
613	284	(B) Ampere's law	(D)
		(C) Poisson's law	
		(D) Curie-Weiss Law	
		Guoy's method is used to find the magnetic susceptibility of	
		(A) solids or liquids	
613	285	(B) liquids	(C)
		(C) solids	
		(D) plasmas	
		In two days, the radioactivity of a Radon decreases to 1/1.45 of its initial value. Its half-life is	
		(A) 2 days	
613	286	(B) 2.3 days	(C)
		(C) 3.7 days	
		(D) 4 days	
613	287	If two nuclei of masses m1 and m2 are fused to form a nucleus of mass m and some energy is released, then	(A)
		(A) $(m1+m2) > m$	

		(C) $(m1+m2) = m$	
		(D) $(m1 - m2) = m$	
613	288	Secondary cosmic rays are produced when primary cosmic rays interacts with (A) electrons (B) positrons (C) photons (D) atmospheric gases	(D)
613	289	Intensity of wave falling as 1/r2, where r is the distance from the source is best described by (A) plane waves (B) spherical waves (C) cylindrical waves (D) ultrasonic waves	(B)
613	290	Unpolarized waves can be polarized by (A) dispersion (B) reflection (C) diffraction (D) all of the above	(D)
613	291	Deviation in the light path could be due to (A) reflection (B) refraction (C) scattering (D) All of the above	(D)
613	292	Fresnel diffraction can be best described by (A) near-field diffraction pattern (B) far-field diffraction pattern (C) intermediate-field diffraction pattern (D) wave front independent effect	(A)
613	293	The wavelengths in the emission spectrum of an element are (A) characteristic of the particular element (B) the same for all elements (C) evenly distributed throughout the visible spectrum (D) independent of the nature of the element	(A)
613	294	The operation of the laser is based on (A) the uncertainty principle (B) spontaneous emission of radiation (C) induced emission of radiation (D) interference of matter waves	(C)

613	295	 Which one of the following wave function cannot be a solution of Schrodinger's equation for all values of x? (A) ψ = Asec (x) (B) ψ = Asin (x) (C) ψ = Aexp (x2) (D) ψ = Aexp (-x2) 	(A)
613	296	Orthorhombic crystal structure is defined by (A) $a = b = c$, $a = b = g = 900$ (B) $a \diamondsuit b = c$, $a = b = g = 900$ (C) $a \diamondsuit b \diamondsuit c$, $a = b = g = 900$ (D) $a \diamondsuit b \diamondsuit c$, $a = b = g \diamondsuit 900$	(C)
613	297	Ohm's law related to electric field strength (E), conductivity (σ) and current density (J) is (A) J = E/ σ (B) J = σ E2 (C) J = σ /E (D) J = σ E	(D)
613	298	In photoelectric effect, the photoelectric current (A) increases when frequency of incident photons increases (B) decreases when frequency of incident photons increases (C) does not depend on frequency but depends on intensity of incident beam (D) depends both on intensity and frequency of incident beam	(C)
613	299	Two identical fuses are rated at 10 A (A) in parallel, the combination acts as a fuse of rating 10 A (B) in parallel, the combination acts as a fuse of rating 20 A (C) in series, the combination acts as a fuse of rating 20 A (D) in series, the combination acts as a fuse of rating 5 A	(B)
613	300	The masses of an ion liberated from different electrolytes by the same current flowing for the same time are proportional to the chemical equivalent of the liberated ions. This law is (A) Faraday's Law (B) Joule's Law (C) Thomson's Law (D) Ohm's law 	(A)