MATHEMATICS (PG) (Final) The number of 4 digit numbers with no two digits common is | | (A)
(C) | 5040
4536 | (B)
(D) | 4823
3024 | |----|--------------------------|---|--------------------|--| | 2. | | = $\left\{ A : A = \left[a_{ij} \right]_{7 \times 7}, a_0 = 0 \text{ or } 1, \forall i, \text{ other of elements in } S \text{ is} \right\}$ | $,j,\sum$ | $\sum a_{ij} = 1, \ \forall \ i \ \text{and} \ \sum a_{ij} = 1, \ \forall \ j $. Then | | | (A)
(C) | 7!
7 ⁷ | (B)
(D) | | | 3. | The numprime } | | : 1 ≤ | $m \le 1000$, m and 1000 are relatively | | | (A)
(C) | 400
250 | (B)
(D) | 300
100 | | 4. | The uni | t digit of 2 ¹⁰⁰ is | | | | | (A)
(C) | 2 6 | (B)
(D) | 4
8 | | 5. | The nur | mber of multiples of 10 ⁴⁴ that divid | de 10 ⁵ | is is | | | (A)
(C) | 11
121 | (B)
(D) | 12
144 | | 6. | The nur | nber of primitive divisors of 50000 | 0 is | | | | (A)
(C) | | (B)
(D) | 40
20 | | 7. | The nur | nber $\sqrt{2} e^{i\pi}$ is | | | | | (A)
(B)
(C)
(D) | a transcendental number
a rational number
an imaginary number
an irrational number | | | | 8. | The nur | nber of divisors of 360 is | | | | | (A)
(C) | 36
24 | (B)
(D) | 48
52 | | | | | | | | 9. | The smallest number with 18 divisors is | | | | | |-----|---|--|-------------------------------|---------------------------------------|--| | | (A)
(C) | | (B)
(D) | 18
180 | | | 10. | The ren | nainder obtained when dividing 2 | ¹⁶ by ² | 47 | | | | (A)
(C) | 0
2 | (B)
(D) | | | | 11. | The val | ue of $\sum_{n=1}^{\infty} \frac{n^2}{(n+1)!}$ | | | | | | (A)
(C) | $e+1$ e^2+1 | (B)
(D) | $e-1$ e^2-1 | | | 12. | The exp | pansion of $(2x-3y)^4$ is | | | | | | (B)
(C) | $16x^{4} + 96x^{3}y - 216x^{2}y^{2} + 216xy$ $16x^{4} - 96x^{3}y + 216x^{2}y^{2} - 216xy$ $16x^{4} - 96x^{3}y + 216x^{2}y^{2} + 216xy$ None of the above | 3 +81j | , ⁴ | | | 13. | The val | ue of $8C_0 + 8C_2 + 8C_4 + + 8C_8$ | | | | | | (A)
(C) | $\frac{2^8}{2^7}$ | (B)
(D) | 2 ⁴
2 ⁵ | | | 14. | The sur | m of the divisors of 140 is | | | | | | | 236
336 | (B)
(D) | 216
440 | | | 15. | $e^{\log m} = $ | ? | | | | | | (A) | | (B) | 0 | | | | (C) | m | (D) | $\frac{1}{m}$ | | | 16. | The fur | action $f(x) = e^x$, $x \in R$ is | | | | | | (A)
(C) | onto but not one-one one-one but not onto | (B)
(D) | one-one onto neither one-one nor onto | | | 17. | The set of all limit points of the set $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ is | | | | | |-----|---|--|--------------|--|--| | | (A)
(C) | | | {0} None of the above | | | 18. | | contains $2n+1$ elements. The number elements is equal to | mber | of subsets of this set containing more | | | | (A)
(C) | 2^{n-1} 2^{n+1} | (B)
(D) | 2^n 2^{2n} | | | 19. | Which | one of the following sequences is | conve | ergent? | | | | (A) | $\langle 2^n \rangle$ | (B) | $\langle 3^n \rangle$ | | | | (C) | $\left\langle \left(\frac{1}{3}\right)^n\right\rangle$ | (D) | None of the above | | | 20. | The ser | ies $\sum \sin \frac{1}{n}$ is | | | | | | | convergent divergent | (B)
(D) | uniformly convergent
None of the above | | | 21. | The seq | uence $\left\{\frac{1}{n}\right\}$ is | | | | | | (A)
(C) | unbounded and convergent bounded and divergent | (B)
(D) | bounded and convergent unbounded and divergent | | | 22. | | y convergent sequence is bounded
ry bounded sequence is converger | | | | | | (C) | I is true, II is false I is false, II is true Both I and II are true Both I and II are false | | | | | 23. | A serie | s $\sum_{n=1}^{\infty} a_n$ converges, then sequence | ce $\{a_n\}$ | ${n \choose n} $ | | | | (A)
(C) | diverges
converges to zero | (B)
(D) | converges to any number None of the above | | | 24. | A function $f: R \to R$ satisfies the equation $f(x+y) = f(x).f(y)$, $\forall x, y \in R$. If $f(x)$ is differentiable at 0 and $f'(0) = 2$, then $f'(x)$ is equal to | | | | | | |-----|--|--|------------|---|--|--| | | (A) | $2f(x), \forall x \in R$ | (B) | $4f(x), \forall x \in R$ | | | | | | $0, \forall x \in R - \{0\}$ | | None of the above | | | | 25. | | $R \to R$ be defined by $f(x) = [x^2]$ of discontinuity of 'f' are |], wh | ere $[x]$ is greatest integer function. The | | | | | (A) | only the integral points | (B) | all rational numbers | | | | | (C) | $\{\pm\sqrt{n}: n \text{ is positive integer}\}$ | (D) | all real number | | | | 26. | Let f : Then | $R \to R$ be given by $f(x) = [x]$, | the g | reatest integer less than or equal to x . | | | | | (B)
(C) | the points at which f is not conti
the points at which f is not conti
f is strictly increasing
f is strictly decreasing | | | | | | 27. | One of the solution for the equation $15x \equiv 6 \pmod{21}$ | | | | | | | | (A)
(C) | 5
7 | (B)
(D) | | | | | 28. | The sol | ution of ordinary differential equa | ation c | of order n contains | | | | | | n-arbitrary constants
more than n-arbitrary constants
no arbitrary constants
None of the above | | | | | | 29. | What is | s the order and degree of the differ | rential | equation $\frac{d^2y}{dx^2} + \sqrt{\left(1 + \left(\frac{dy}{dx}\right)^3\right)} = 0 ?$ | | | | | ` / | first order, second degree second order, second degree | (B)
(D) | | | | | | .2 | · | (D) | second order, first degree | | | | 30. | $\frac{d^2y}{dx^2} + \frac{d^2y}{dx^2}$ | $\frac{dy}{dx} - 2y = 0$, has the solution | | | | | | | (A) | $y = C_1 e^{-2x} + C_2 e^x$ | (B) | $y = C_1 e^{-2x}$ | | | | | (C) | $y = C_1 e^{-2x} + C_2 e^{-x} + C_3$ | (D) | None of the above | | | - 31. Let A be a square matrix of order n > 1 such that $A \neq I$ and the sum of each row is 1. Then the sum of each row of the matrix A^n is - (A) n (B) 1 (C) n^n - (D) None of the above - The eigen values of the matrix $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ are 32. - (A) 1, 0, 1 (B) 2, -2, 0 (C) 2, -1, -1 - (D) 0, 0, 0 - The rank of the matrix $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}$ is 33. - (A) 1 (B) 2 (C) 3 - (D) 4 - 34. Let A be a 3×3 matrix with eigen values 1, -1 and 3. Then - (A) $A^2 + A$ is non-singular (B) $A^2 A$ is non-singular (C) $A^2 + 3A$ is non-singular (D) $A^2 3A$ is non-singular - The value of the determinant $\begin{bmatrix} a^2 & a & 1 \\ b^2 & b & 1 \\ c^2 & c & 1 \end{bmatrix}$ is 35. - (A) (a-b)(b-c)(c-a) (B) -(a-b)(b-c)(c-a) (C) (b-a)(c-b)(c-a) (D) -(b-a)(c-b)(c-a) - 36. The solution of the system of equations 10x + y + z = 12, x + 10y + z = 12, x + y + 10z = 12 is - (A) 1, -1, 1 (B) -1,-1,-1 (C) 1, 1, 1 (D) -1, 1, -1 37. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then $A^2 - 5A + 7I =$ $$(A) \quad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$ (B) $$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ (C) $$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$ (D) None of the above The inverse of the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ is 38. (A) $$\begin{bmatrix} -\sin\theta & \cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$$ (B) $$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$ (C) $$\begin{bmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$ (D) None of the above Let A be a 4×4 matrix with eigen values 1, -1, 5, 2. Then the determinant of A^2-I 39. $$(D)$$ 0 $tan^{-1}x$ can be expressed as 40. (A) $$x + \frac{x^3}{3!} - \frac{x^5}{5!} + \dots$$ (B) $$x - \frac{x^3}{3} + \frac{x^5}{5} + \dots$$ (C) $$1+x+\frac{x^2}{2!}+...$$ (D) $$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$ If $\cos(A-B) = \frac{1}{2}$ and $\sin(A+B) = \frac{1}{2}$, then the smallest positive values of A and B 41. are respectively (A) $$\frac{\pi}{4}, \frac{\pi}{3}$$ (B) $$\frac{7\pi}{12}, \frac{\pi}{4}$$ (C) $$\frac{5\pi}{12}, \frac{\pi}{4}$$ (D) $$\frac{\pi}{4}, \frac{5\pi}{12}$$ 42. 48. If $\log_{27} x = \log_3 27$, then x equals (A) 27 (C) 3^{27} (A) 36 (C) 24 If $x^3 - 11x^2 + ax - 36 = 0$ has a positive root which is the product of the other two roots, then the value of a is (B) 6 (D) 64 (B) 3 (D) 27^3 | 43. | The equation with rational coefficients, whose roots are $1 \pm \sqrt{2}$, 3 is | | | | | |-----|--|--|--------------|---|--| | | ` ′ | | | $x^3 - 5x^2 + 5x + 3 = 0$ None of the above | | | 44. | If α , β equal to | | $n x^3 +$ | $px^2 + qx + r = 0$, then $\alpha^2 + \beta^2 + \gamma^2$ is | | | | | $p^2 - 2q$ $2p^2 + q^2$ | (B)
(D) | $p^2 + 2q$ $2p - q^2$ | | | 45. | Given tl | that $2+i\sqrt{3}$ is one root of x^3-5x^2 | $^{2} + 11x$ | x-7=0. Then the other roots are | | | | | $2 - i\sqrt{3}, -1$ $2 + i\sqrt{3}, 1$ | | $2-i\sqrt{3}$, 1
None of the above | | | 46. | $\lim_{x \to \infty} \frac{x^2}{3x^2}$ | $\frac{+2x+3}{+2x+1} =$ | | | | | | (A) | | (B) | J | | | | (C) | | | does not exist | | | 47. | The der | ivative of $\log_{10} x$ with respect to | x is | | | | | (A) | $\frac{1}{x \log_{10} x}$ | (B) | $\frac{1}{x}$ | | | | (C) | $\frac{\log_e 10}{x}$ | (D) | $\frac{\log_{10} e}{x}$ | | | 49. | The derivative of e^t with respect to \sqrt{t} | is | | |-----|--|------------|---| | | (A) $\frac{e^t}{2\sqrt{t}}$ | (B) | $\frac{2\sqrt{t}}{e^t}$ | | | (C) $2\sqrt{t}e^{t}$ | (D) | $2\sqrt{te^t}$ | | 50. | The function $f: \Box \rightarrow \Box$ defined by $f(\Box f)$ | (x) = x | $-\sin x$ is an increasing function for | | | (A) all x in \square
(B) all x such that $\cos x > 0$
(C) all x such that $\cos x < 0$
(D) all x such that $\sin x \ge 0$ | | | | 51. | The maximum value for the function xe | -x is | | | | (A) <i>e</i> | (B) | | | | (C) $\frac{1}{e}$ | (D) | $\frac{1}{e}$ | | 52. | A function $f:(0,1) \to \square$ is defined as | s $f(x)$ | $=\frac{1}{2^{n-1}}$ for $\frac{1}{2^n} < x \le \frac{1}{2^{n-1}}$. Then the | | | integral $\int_0^1 f(x) dx$ equals | | | | | (A) $\frac{1}{2}$ | (B) | 1 | | | (A) $\frac{1}{2}$ (C) $\frac{4}{3}$ | (D) | $\frac{2}{3}$ | | 53. | $\int_0^{\frac{\pi}{2}} \sin^2 x \cos^2 x dx \text{ equals}$ | | | | | (A) $\frac{\pi}{8}$ | (B) | $\frac{\pi}{16}$ | | | (C) $\frac{\pi}{32}$ | (D) | 1 | | 54. | The area of the region $A = \{(x, y) \in \square^2 : $ | x + y | ≤ 1 is | | | (A) 2
(C) 4 | (B)
(D) | $ \sqrt{2} $ $ 4\sqrt{2} $ | - Suppose for every integer m, $\int_{m}^{m+1} f(x) dx = m^2$. Then the value of $\int_{-2}^{4} f(x) dx$ is 55. - (A) 16 (B) 14 (C) 19 (D) 35 - 56. $\int \frac{dx}{\sqrt{x^2 1}}$ is equal to - (A) $\cos h^{-1}x + c$ (B) $\sin h^{-1}x + c$ (C) $\cos^{-1} x + c$ (D) $\sin^{-1} x + c$ - 57. $\int \sqrt{a^2 + x^2} dx$ is equal to - (A) $\frac{a^2}{2}\cos h^{-1}\frac{x}{a} + x\frac{\sqrt{a^2 + x^2}}{2}$ (B) $\frac{a^2}{2}\tan h^{-1}\frac{x}{a} + x\frac{\sqrt{a^2 + x^2}}{2}$ - (C) $\frac{a^2}{2} \sin h^{-1} \frac{x}{a} + x \frac{\sqrt{a^2 + x^2}}{2} + \text{constant}$ (D) None of the above - 58. $\int_0^{\pi} \frac{dx}{(5+4\sin x)}$ is equal to - (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ - (D) None of the above - 59. The area bounded by one arch of the curve $y = \sin ax$ and the x-axis is - (A) a (B) $\frac{a}{2}$ (C) $\frac{2}{a}$ - (D) None of the above - The volume of revolution obtained by revolving the loop of the curve $y^2 = x(2x-1)^2$ 60. about the x-axis is - (A) $\frac{\pi}{48}$ (B) $\frac{\pi}{24}$ (C) $\frac{\pi}{12}$ (D) None of the above | 61. | The length of complete arch of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ is | | | | |-----|--|--|------------|--| | | (A)
(C) | | (B)
(D) | 8 <i>a</i> None of the above | | 62. | The con and $(a,$ | | on th | e straight line joining the points $(0,b)$ | | | | $\frac{x}{a} + \frac{y}{b} = 1$ | (B) | $\frac{x}{a} - \frac{y}{b} = 1$ | | | (C) | $\frac{x}{a^2} + \frac{y}{b^2} = 1$ | (D) | None of the above | | 63. | The ce $(-5, 2,$ | | e vert | ices are $(2, 4, -3), (-3, 3, -5)$ and | | | (A) | (-2, -3, -3) | (B) | (-3, 3, -2) | | | (C) | (3, -2, -3) | (D) | (-2, 3, -3) | | 64. | | nation to the plane which passes $y - y + z = 3$ | throug | h the point $(-1, 3, 2)$ and parallel to the | | | | x - y + z = 2 | (B) | x - y + z = -2 | | | (C) | x + y - z = 2 | (D) | x + y - z = -2 | | 65. | The $4x + 3y$ | distance between the $-12z-9=0$ is | paralle | l planes $4x + 3y - 12z + 6 = 0$ and | | | (A) | $\frac{13}{15}$ | (B) | $\frac{14}{15}$ | | | (C) | | | | | | (C) | 13 | (D) | 14 | | 66. | | oordinates of the point a) and $(1, -2, 6)$ meets the plane | | ich the line joining the points $y-z+3=0$ | | | (A) | (-2, -7, 11) | (B) | (-2, 7, 11) | | | (C) | (-2, -7, -11) | (D) | (2, 7, 11) | (B) (3,4,-5) The centre of the sphere $x^2 + y^2 + z^2 - 6x + 8y - 10z + 1 = 0$ is 67. (A) (5,-4,3) | | (C) $(-5, -4, -3)$ | (D) $(3,-4,5)$ | |-----|--|---| | 68. | $\nabla \times (\nabla \times \mathbf{A})$ equals | | | | (A) 0
(C) $\nabla^2 \mathbf{A} + \nabla(\nabla \cdot \mathbf{A})$ | (B) $-\nabla^2 \mathbf{A} + \nabla (\nabla \cdot \mathbf{A})$
(D) $(\nabla \times \mathbf{A}) \times \mathbf{A}$ | | 69. | | $z = xy^2 + yz^3$ at the point (2,-1,1) in the | | | direction of the vector $\vec{i} + 2\vec{j} + 2\vec{k}$ is | | | | (A) $-\frac{3}{11}$ | (B) $\frac{3}{11}$ | | | (C) $-\frac{11}{3}$ | (D) $\frac{11}{3}$ | | 70. | The unit normal to the surface $x^2 + 2y^2 $ | $-z^2 = 7$ at $(1, -1, 2)$ is | | | $(A) \frac{1}{3} \left(\vec{i} - 2\vec{j} + 2\vec{k} \right)$ | (B) $\frac{1}{3}(\vec{i}+2\vec{j}+2\vec{k})$ | | | (C) $\frac{1}{3}(\vec{i}-2\vec{j}-2\vec{k})$ | (D) $\frac{1}{3}\left(-\vec{i}+2\vec{j}+2\vec{k}\right)$ | | 71. | The divergence of $\vec{F} = xyz\vec{i} + 3x^2y\vec{j} + (xz\vec{i} 3x^2y\vec{i} + (xz\vec{i} + 3x^2y\vec{j} + (xz\vec{i} + 3x^2y\vec{i} 3x^2y$ | $(z^2 - y^2 z)\vec{k}$ at $(1, 2, -1)$ is | | | (A) 5
(C) 6 | (B) -5
(D) -6 | | 72. | If $A = (3x^2 - 6yz)i + (2y + 3xz)j + (1 - 4z)i + (2y + 3xz)j + (1 - 4z)i$
along the path C given by $x = t$, $y = t^2$, | $(xyz^2)k$, then $\int_C A dr$ from origin to (1,1,1)
$z = t^3$ is | | | (A) 0
(C) 2 | (B) 1
(D) 4 | | | | | | 73. | | attinuous and have continuous first partial derivatives at $\partial P = \partial Q$ | |-----|---|--| | | _ | If $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ then, for every closed path C in R, | | | $\iint_{C} (Pdx - Qdy) $ equals | | | | (A) 0
(C) 3 | (B) 2
(D) 4 | | 74. | The integral $\iint_S r.n \ dS$, where sequals | V is a closed surface and V is the volume enclosed by S , | | | (A) 2 <i>V</i>
(C) 6 <i>V</i> | (B) 3V
(D) 12V | 75. The equation of the right circular cone with its vertex at the origin, axis along z-axis and semi-vertical angle α is (A) $$x^2 + y^2 = z^2 \tan^2 \alpha$$ (B) $x^2 - y^2 = z^2 \tan^2 \alpha$ (C) $x^2 + y^2 = z \tan^2 \alpha$ (D) $x^2 - y^2 = z \tan^2 \alpha$ 76. The probability of an element of order 2 in the symmetric group S_3 is | (A) | 0 | (B) | $\frac{1}{2}$ | |-----|---|-----|---------------| | (C) | 1 | (D) | $\frac{1}{6}$ | 77. If 3 balls are randomly drawn from a bowl containing 5 white and 6 black balls, what is the probability that one of the drawn ball is black and the other two white? | (A) | $\frac{5}{22}$ | (B) | $\frac{4}{11}$ | |-----|----------------|-----|----------------| | (C) | $\frac{5}{11}$ | (D) | $\frac{6}{11}$ | 78. The probability mass function or probability density function for which the mean in units and the variance in square units are same is (A) binomial(B) Poisson(C) standard normal(D) geometric | $x, -\infty < x < \infty$. | |------------------------------------| | | | | | nsisting of 11 | | | | s.21. In how the total sum is | | | | robability that either A nor B | | | | | | | | ne differential | | | | | | | | | | 85. | The solution of the IVP | $\frac{dy}{dx} = x^2y - 3x^2, y(0) = 1$ is $y =$ | |-----|-------------------------|--| |-----|-------------------------|--| (A) $3+ce^{x^3/3}$, c is a constant (B) $3-2e^{x^3/3}$ (C) $3+3e^{x^3/3}$ One of the integrating factors of the differential equation $x \frac{dy}{dx} + y \log x = e^x$ 86. (A) $\chi^{\log x}$ (B) $x^{\frac{\log x}{2}}$ (C) e^x (D) None of the above A particular integral of the differential equation $\frac{d^2y}{dx^2} + 16y = \cos 4x$ is 87. (A) $\frac{x}{4}\sin 4x$ (B) $\frac{x}{8}\cos 4x$ (C) $\frac{x}{4}\cos 4x$ (D) $\frac{x}{8}\sin 4x$ 88. Which one of the following differential equations is exact? (A) $(3x^2 + 2xy)dx + (2y - x^2)dy = 0$ (B) $(3x^2 - 2xy)dx + (2y + x^2)dy = 0$ (C) $(3x^2-2y)dx+(2y-x^2)dy=0$ (D) $(3x^2-2xy)dx+(2y-x^2)dy=0$ Let $f(x,y) = x^5 y^2 \tan^{-1} \frac{y}{x}$. Then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ equals (A) 2*f* (C) 5*f* 90. The differential equation that represents parabolas which have a latus rectum 4a and whose axes are parallel to the x-axis is (A) $4a\frac{d^2y}{dr^2} + \left(\frac{dy}{dr}\right)^3 = 0$ (B) $2a\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 = 0$ (C) $2a\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^3 = 0$ (D) None of the above The general solution of the equation $\frac{dy}{dx} + y \cos x = 0$ is 91. (A) $$ce^{-\sin x}$$ (C) $$ce^{-\cos x}$$ (D) $ce^{\cos x}$ The solution of the partial differential equation $u_t + cu_x = 0$ is u(x,t) =92. (A) $$\sin(x-t)$$ (B) $\cos(x-ct)$ (C) $$\cos(cx-t)$$ (D) $\cos xt$ 93. The differential equation obtained from the equation of all circles passing through the origin and having their centers on the x-axis is $$(A) \quad x^2 - y^2 - 2xy \frac{dy}{dx} = 0$$ (B) $y^2 - x^2 + 2xy \frac{dy}{dx} = 0$ (C) $$x^2 + y^2 - 2xy \frac{dy}{dx} = 0$$ (C) $x^2 + y^2 - 2xy \frac{dy}{dx} = 0$ (D) $x^2 - y^2 + 2xy \frac{dy}{dx} = 0$ The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x+2y^3}$ with the condition that x(1) = 194. is $$(A) \quad y = x^3$$ (B) $x = y^3$ (D) $x = y^2$ (C) $$y = x^2$$ The general solution of the partial differential equation $\frac{\partial z}{\partial x} \frac{\partial z}{\partial y} = xy$ is 95. (A) $$z = a \frac{x^2}{2} - \frac{y^2}{2a} + b$$ (B) $z = a\frac{x^2}{2} + \frac{y^2}{2a} - b$ (C) $$z = a\frac{x^2}{2} + \frac{y^2}{2a} + b$$ (D) $z = a \frac{x^2}{2} - \frac{y^2}{2a} - b$ Let $f,g: \square \to \square$ be two continuous functions such that 96. f(a) < g(a) and f(b) > g(b) for some $a, b \in \square$. Then (A) $$p(f(a)) \le p(g(a))$$ for any polynomial $p(x) \in \Box [x]$ (B) there exists $$t \in \Box$$ such that $p(f(t)) = p(g(t))$ for any $p(x) \in \Box[x]$ (C) $$p(f(b)) \ge p(g(b))$$ for all $p(x) \in \Box [x]$ (D) for each $t \in \square$, there exists $p(x) \in \square[x]$ such that $p(f(t)) \neq p(g(t))$ | 97. | The function $f:(-1,1) \to \Box$ defined by $f(x) = \frac{x}{1- x }$ is | |------|--| | | (A) one-one but not onto (B) not onto (C) one-one and onto (D) neither one-one nor onto | | 98. | Let $f: \Box \to \Box$ be the function $f(x) = \begin{cases} e^{\frac{-1}{x}} & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$ | | | Then at $x = 0$, f is | | | (A) not continuous (B) differentiable (C) continuous but not differentiable (D) neither continuous nor differentiable | | 99. | For each $n \in \square$, let $a_n = \sum_{k=1}^n \frac{\left(-1\right)^{k-1}}{k}$. Then the sequence (a_n) is | | | (A) not a Cauchy sequence (B) a convergent sequence (C) not a bounded sequence (D) convergent to 0 | | 100. | The set of all polynomials with rational coefficients | | | (A) is not countable (B) is finite (C) does not contain □ (D) is countable | | 101. | If the graph of the function $f: \Box \to \Box$ intersects with the line $y = x$, then the inf $\{ x - f(x) : x \in \Box\}$ is | | | (A) 0 (B) greater than 0 | | | (C) $ f(0) $ (D) None of the above | | 102. | The real valued function $f(x) = \min\{1, x, x^3\}$ on \square is | | | (A) continuous on □ but not differentiable at x = 1 (B) differentiable at x = 1 (C) differentiable at all reals (D) None of the above | | 103. | Let $f: \Box \to \Box$ be such that $f(x+y) = f(xy)$ for all $x, y \in \Box$. The f is | | | (A) a one-one function (B) an onto function (C) a constant function (D) a bijection | | | | | 104. | | sequence (x_n) converge to 0. Let (y_n) is | Then | the | e sequence $(x_n y_n)$ converges to 0 if the | |------|--|---|----------|------------|--| | | (A)
(C) | not bounded
monotone | ` | 3)
O) | bounded
None of the above | | 105. | The seq | uence $\left(\frac{\left(-1\right)^n}{n}\right)$ | | | | | | | converges to 0 is monotone | • | _ | is not bounded
None of the above | | 106. | The seri | tes $\sum_{n=1}^{\infty} \frac{5^n}{(n-1)!}$ converges to | | | | | | (A)
(C) | | (E
(I | 3)
O) | $e^{\frac{5}{6}}$ | | 107. | $\lim_{n\to\infty}\frac{2^{n+1}}{2^n}$ | $\frac{+3^{n+1}}{+3^n} \text{ equals}$ | | | | | | (A)
(C) | 3 1 | (E
(I | 3)
)) | 2 0 | | 108. | Let $f:$ | $(0,1) \cup (2,3) \rightarrow \square$ be a function | on with | f' | f(x) = 0 for all x. Then | | | | f need not be constant $f(x) = 0$ for all x | | | s constant on (0,1) but not in (2,3) | | 109. | Let $f: \Box$ | $\rightarrow \Box$ be a continuous function | ion suc | h tł | nat $f(\Box)\subseteq\Box$. Then | | | | f is constant such f doesn't exist | | | f need not be constant $f(\Box) = \Box$ | | 110. | $\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)$ | $-\frac{1}{n^2}$ equals | | | | | | (A) | e | (E | 3) | $\frac{1}{e}$ | | | (C) | e^2 | (I |)) | $\frac{1}{e}$ $\frac{1}{e^2}$ | | 111. | The Diophantine equation $4x + 5y = 8$ has | | | | | |------|--|---|------------|-----------------------------------|--| | | | a unique solution
no solution | (B)
(D) | | | | 112. | The gco | d and the lcm of the natural number | ers n | and $n+1$ are | | | | | 1, n(n+1) | (B) | n, n(n-1) | | | | (C) | n+1, n(n+1) | (D) | None of the above | | | 113. | $\int_{ z =1/3} \frac{1}{2}$ | $\frac{2}{z-1}dz =$ | | | | | | (A) | $2\pi i$ 0 | (B) | $\frac{1}{2\pi}$ | | | | (0) | · | (D) | 211 | | | 114. | $\left(\frac{1+i}{\sqrt{2}}\right)^2$ | is equal to | | | | | | (A)
(C) | $\frac{1}{\sqrt{2}}$ | (B)
(D) | 0
- 1 | | | 115. | Let the | function $f: \Box \rightarrow \Box$ be defined by | f(z) | $= z^3 + z + 1$. Then f is | | | | | one-one
bijection | | onto
None of the above | | | 116. | The Ca | uchy-Riemann equations are | | | | | | , , | $u_x = -v_y, \ u_y = v_x$ | | $u_x = v_y, \ u_y = -v_x$ | | | | (C) | $u_x = v_x, \ u_y = v_y$ | (D) | $u_x = v_x, \ u_y = -v_y$ | | | 117. | Let ωi , | $1 \le i \le 6$ denote the sixth root of u | nity. | Then the product of ωi is | | | | (A) | | (B) | -1 | | | | (C) | $\frac{1}{2}(1+i)$ | (D) | None of the above | | | | | | | | | | | | | | | | | 118. | The res | sidue of $\frac{1}{\left(z^2 + a^2\right)^2}$ at $z = ai$ is | | | |------|--------------|---|-------------|--| | | (A) | $\frac{i}{4a^2}$ $\frac{i}{4a^3}$ | (B) | $\frac{1}{4a^3}$ | | | (C) | $\frac{i}{4a^3}$ | (D) | None of the above | | 119. | The nu | mber of elements in the set $\{a \in \square\}$ | 18 : al | $b \equiv 1 \pmod{18}$ for some $b \in \square_{18}$ | | | (A)
(C) | 18
6 | (B)
(D) | 9
2 | | 120. | | | | with addition and multiplication defined $f(x)g(x)$ respectively. Then $C[0,1]$ is | | | (A)
(C) | an integral domain is not closed under addition | | is not an integral domain is not closed under multiplication | | 121. | If $a \in C$ | G such that the order of a is 7, the | n the o | order of bab^{-1} for any b | | | | is 3 need not be 7 | | is 7 need not be finite | | 122. | Let G b | be a group with $a^2 = e$ for every a | $e \in G$. | Then G is | | | \ / | abelian such a group not exists | ` / | not abelian cyclic | | 123. | A poly | nomial of degree 5 has | | | | | ` ′ | no real root
at least one real root | (B)
(D) | all its roots real
at most four real roots | | 124. | Which | one of the following is not a group | p? | | | | | $(\Box,+)$ | | $(\Box,+)$ | | | (C) | $(\Box,+)$ | (D) | $(\Box ,+)$ | | 125. | | is a group and x is a lentity and x^{15} = identity, then the | | dentity element of G such that $r \circ f x$ is | | | (A)
(C) | | (B)
(D) | 10
150 | | 126. | The group of order 19 is | | |------|---|------| | | (A) cyclic (B) not abelian (C) not cyclic (D) None of the above | | | 127. | The order of $(143)(25)$ in S_5 is | | | | (A) 5
(C) 6 (B) 12
(D) 3 | | | 128. | Let n be a natural number. Which one of the following is not a vector space over field \square ? | the | | | (A) The set of polynomials of degree less than or equal to n. (B) The set of polynomials of degree less than n. (C) The set of polynomials of degree greater than n. (D) None of the above | | | 129. | Let <i>W</i> be the sub space spanned by $S = \{(1,0,0,0), (0,1,0,0), (1,1,0,0), (1,1,1,0), (2,0,3,0)\}$. Then the dimension of <i>W</i> is | | | | (A) 4
(C) 2 (B) 5
(D) 3 | | | 130. | The number of subsets (including the empty subset and the whole set) for a set of elements is | of n | | | (A) n (B) n^2 (C) n^n (D) 2^n | | | 131. | Let G be the complete graph on n vertices. Then the number of edges in G is | | | | (A) n (B) n^2 | | | | (C) $2n$ (D) $\frac{n(n-1)}{2}$ | | | 132. | Let T be a tree with n vertices. Then the trace of the adjacency matrix of T is | | | | (A) 0 (B) n (C) $n-1$ (D) $2(n-1)$ | | | 133. | A graph in which all the vertices are of equal degree is | | | | (A) complete graph (C) Hamiltonian graph (B) multi graph (D) regular graph | | is the optimal For $n \ge 4$, let G be a graph with n vertices and n edges. Then | | | G is a star G is acyclic | | G should contain a cycle G is a complete graph | |------|------------|---|----------------------|--| | 135. | | the optimal value of the objectif
f the objective function of its dual | | nction of a LPP and Z' is the optim | | | (A)
(C) | $Z < Z'$ $Z \neq Z'$ | (B)
(D) | Z > Z' $Z = Z'$ | | 136. | Solving b | by variation of parameter $y''-2y'$ | +y=0 | $e^x \log x$, the value of Wronskion W is | | | (A) | e^{2x} | (B) | | | | (C) | e^{-2x} | (D) | None of the above | | 137. | The va | alue of Wronskion $W(x, x^2, x^3)$ is | 3 | | | | (A) | $2x^4$ | (B) | $2x^2$ | | | (C) | $2x^3$ | (D) | None of the above | | 138. | The cor | mplementary function of $(D^4 - a^4)$ | y = | 0 is | | | (A) | $y = C_1 e^{ax} + C_2 e^{-ax}$ | | | | | (B) | $y = C_1 e^{ax} + C_2 e^{-ax} + C_3 \cos ax $ | $\frac{1}{4} \sin a$ | ux . | | | | $y = C_1 e^{-ax} + C_2 e^{ax} + C_3 \sin ax + C_3$ None of the above | cos a | ux . | | 139. | The dif | ferential equation $f_{xx} + 2f_{xy} + 4f_{yy}$ | $_{y}=0$, | is classified as | | | | elliptic
parabolic | | hyperbolic
None of the above | | 140. | Using E | Binomial theorem the 7 th power of | `11 is | | | | | 1,94,87,171
1,94,77,171 | | 1,94,87,121
1,94,77,121 | | 141. | Find the | e coefficient of x^7 in $(1-x-x^2+$ | $(x^3)^6$ | | | | (A)
(C) | 124
-144 | (B)
(D) | 144
-124 | | 1.40 | T1 | i | 1+i | | |------|------------|---------------------|-----|------| | 142. | The matrix | $\left(-1+i\right)$ | i | is a | - (A) symmetric matrix - (B) skew symmetric matrix - (C) Hermitian matrix - (D) skew Hermitian matrix - 143. If A is a matrix of order 4×5 , its rank is - (A) 4 (B) ≤5 (C) ≤4 (D) 5 - If $A^T = A^{-1}$, then A is 144. - (A) Hermitian matrix - (B) orthogonal matrix (C) unitary matrix - (D) skew symmetric matrix - The basis of R_3 from the set $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, where $\alpha_1 = (1, -3, 2)$, $\alpha_2 = (2, 4, 1)$, 145. $\alpha_3 = (3,1,3)$ and $\alpha_4 = (1,1,1)$ is - (A) $(\alpha_1 \alpha_2 \alpha_3)$ (B) $(\alpha_1 \alpha_2 \alpha_4)$ (C) both $(\alpha_1 \alpha_2 \alpha_3)$ and $(\alpha_1 \alpha_2 \alpha_4)$ (D) None of the above 146. If $$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 6 & 7 & 8 & 9 \\ 2 & 4 & 6 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$, then - (A) first three rows are linearly independent - (B) first and third rows are linearly independent - (C) first and fourth rows are linearly independent - (D) all columns are linearly independent - For which value of x will the matrix given below become singular? 147. $$\begin{pmatrix} 8 & x & 0 \\ 4 & 0 & 2 \\ 12 & 6 & 0 \end{pmatrix}$$ (A) 4 (B) 6 (C) 8 - (D) 12 - The sum of coefficients in the binomial expansion of $(5p-4q)^n$, where 'n' is a 148. positive integer is - (A) 0 (B) 2 (C) 1 (D) 4 The range of $f(x) = x^2 + |x| + 1$ defined on R is 149. (A) (0,∞) (C) R (B) $[0, \infty)$ (D) $[1, \infty)$ 150. The curvature of a circle is (A) zero (B) always ≤ 1 (C) constant (D) None of the above ***