

TEST BOOKLET No.

142

TEST FOR POST GRADUATE PROGRAMMES

STATISTICS

Time: 2 Hours

ROLL No.

Maximum Marks: 450

INSTRUCTIONS TO CANDIDATES

- 1. You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Answer Sheet. Read carefully all the instructions given on the Answer Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- 3. Also write your Roll Number, Test Code, and Test Subject in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with a Ball Point Pen.
- 4. The paper consists of 150 objective type questions. All questions carry equal marks.
- 5. Each question has four alternative responses marked A, B, C and D and you have to darken the bubble corresponding to the correct response fully by a Ball Point Pen as indicated in the example shown on the Answer Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- 7. Space for rough work is provided at the end of this Test Booklet.
- 8. You should return the Answer Sheet to the Invigilator before you leave the examination hall. However, you can retain the Test Booklet.
- 9. Every precaution has been taken to avoid errors in the Test Booklet. In the event of any such unforeseen happening, the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be taken at the time of evaluation, if necessary.

STATISTICS

If $1^3 + 2^3 + 3^3 + ... + 100^3 = k^2$, then k is equal to 1.

(A) 10100 (C) 5050

(B) 5000 (D) 1010

If $A = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$, then A^3 is

(A) A (C) 9A

(B) 2A (D) I

The inverse of $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{bmatrix}$ is

(A) $\begin{bmatrix} 3 & -1 & -3 \\ -2 & 1 & 2 \\ 1 & -1/2 & -1/2 \end{bmatrix}$ (B) $\begin{bmatrix} 3 & -1 & -3 \\ -2 & 1 & 2 \\ 1 & -1/2 & 1/2 \end{bmatrix}$

(C) $\begin{bmatrix} 3 & -1 & -3 \\ -2 & 1 & 2 \\ 1 & 1/2 & -1/2 \end{bmatrix}$ (D) Does not exist

If $A = \begin{bmatrix} 2 & -1 & 4 \\ x & 0 & 1 \\ 1 & 2 & 0 \end{bmatrix}$ is a singular matrix, then x is equal to

(A) -2 (C) 3/8

(B) 1 (D) -5/8

(A) 20 (C) 32

5.	The co-efficient of x^{i} in e^{ixi} is	lu .	
	(A) e ¹	(B) 4e ³	
	(A) e^1 (C) $\frac{4e^4}{3}$	(D) e^t	
б.	If $a+b=3(c+d)$, which one a,b,c and d ?	of the following is the average of	rt
	(A) $c+d/4$	(B) $3(c+d)/8$	
	(C) $3(c+d)/4$	(D) $c+d$	
7.	A discrete random variable X take $3P(X=1) = 2P(X=2) = 5P(X=2)$ equal to	skes the values 1,2,3 and 4 such that $=3$ = $P(X=4)$. Then $P(X=3)$ is	t
	(A) 6/61	(B) 3/61	9
	(C) 2/61	(D) 1/61	
8.	The probability of observing a mothan the value observed, when the	ore extreme value of the test statistic null hypothesis is true is	
	(A) statistic (C) p-value	(B) parameter (D) level of significance	
9.	If a random variable X has $E(X^2+3X+2)$ is equal to	mean 3 and variance 4, then	

(B) 24 (D) 16

Let X be a random variable with probability density function 10.

Let X be a random variable with prob
$$f(x) = \begin{cases} \frac{1}{3}e^{-\frac{X}{3}} & ; x > 0 \\ 0 & otherwise. \end{cases}$$
Then $P(X > 3)$ is

Then P(X > 3) is

- (A) 1/e
- (C) 1/3

- (B) $1/e^2$ (D) 0.75

A random variable X has MGF given by 11. $M_x(t) = Exp\{5t + 3t^2\}$. Then the distribution of X is

- Uniform distribution over (5,7) (A)
- Exponential distribution with parameter 3 (B)
- Normal distribution with mean 5 and variance 6 (C)
- (D) Chi-square distribution with 3 d.f

For estimating the population proportion P in a class of a population 12. having N units, the variance of the estimator p of P based on the sample of size n is

(A)
$$\frac{N}{N-1} \cdot \frac{PQ}{n}$$

(B)
$$\frac{N}{N-1} \cdot \frac{PQ}{N}$$

(C)
$$\frac{N-n}{N-1} \cdot \frac{PQ}{n}$$

(D)
$$\frac{N-1}{N-n} \cdot \frac{PQ}{n}$$

A hotel has 10 rooms in a row on one floor. The clerk assigns guests 13. to these rooms at random. If the rooms are all empty and two guests arrive, what is the probability that they will be in adjoining rooms?

(A) 2/5

3/5

(C) 4/5

1/5 (D)

	2
14.	The power of a statistical test depends upon
	 (i) sample size (ii) level of significance (iii) variance of sampled population (iv) the difference between the value specified by null and alternative hypothesis
	(A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iv) (D) All the four
15.	A valid t-test to assess an observed difference between two sample mean value requires
	 (i) both populations are independent (ii) the observations to be sampled from normally distributed parent population (iii) the variance to be the same for both populations
	(A) (i) and (ii) (B) (ii) and (iii) (C) (i) and (iii) (D) All the three conditions
16.	A two-tail statistical test is
	 (A) a statistical test for which the critical region comprises both large and small values of the test statistic (B) a statistical test for which the critical region comprises either large or small values of the test statistic (C) a statistical test for which the critical region comprises small values of the test statistic (D) a statistical test for which the critical region comprises large values of the test statistic
17.	
. / .	The measure of central tendency which is not affected by the extreme

(B) Median

(D) Harmonic Mean

(A) Arithmetic Mean

(C) Geometric Mean

18.	The sum of 10 items is 12 and the sum of their squares is 16.9. The sum of their squares is 16.9.	The
	standard deviation is	

(A) 0.6

(B) 0.5

(C) 0.4

(D) 0.3

19. The variance of first n natural numbers is

(A) $\binom{n^2+1}{12}$

- (B) $\binom{n+1}{12}^2$
- (C) $(n^2-1)/_{12}$
- (D) $(2n^2-1)/_{12}$

20. If a random variable X has mean 3 and standard deviation 5, then the variance of a variable Y = 2X - 5 is

(A) 45

(B) 100

(C) 15

(D) 40

21. A coin is tossed until a head appears. Then the sample space is

(A) Finite

- (B) Countably infinite
- (C) Uncountable

(D) Not defined

22. A player tosses two fair coins. He wins Rs. 5 if two heads appear, Rs.22 if one head appears and Rs.1 if no head occurs. Then his expected gain is

(A) Rs. 25/2

(B) Rs. 27/2

(C) Rs. 35/2

(D) Rs. 7/2

If the sample values are 1, 3, 5, 7 and 9, the standard error of sample 23. mean is

(A)
$$\sqrt{2}$$

(B)
$$\frac{1}{\sqrt{2}}$$
 (D) $\frac{1}{2}$

(D)
$$\frac{1}{2}$$

Let X and Y be two independent Binomial random variables with 24. parameters (2,1/3) and (7,1/3). Then P[X+Y=3] is equal to

(A)
$$\binom{9}{3} \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^6$$

(B)
$$\binom{9}{3} \left(\frac{2}{3}\right)^3 \left(\frac{1}{3}\right)^6$$

(C)
$$\binom{7}{2} \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^5$$

(D)
$$\binom{9}{3} \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^8$$

The m.g.f. of X is given by $M_X(t) = 3/(3-t)$. Then the mean and 25. variance of X are

Let (X,Y) follow Bivariate Normal with E(X)=2, E(Y)=3, 26. r(X,Y) = 0.6, Var(X) = 4 and Var(Y) = 2. Then the conditional mean of X given Y = y is

(A)
$$0.8 y - 0.4$$

(B)
$$0.4 y - 0.8$$

(C)
$$0.2 \text{ Y} - 0.4$$

(D)
$$0.4Y - 0.2$$

27. The regression line of Y on X given $\mu_{x} = 9.2$, $\mu_{y} = 16.5$, $\sigma_{x} = 2.1$, $\sigma_{y} = 1.6$, $\rho_{xy} = 0.84$; is

(A) Y = 2X + 5

(C) Y = 0.4X + 12.82

(B) Y = 0.64X + 10.612(D) Y = 0.64X + 22.388

Let A be a square matrix. Then $A+A^{T}$ (T being the transpose) will be 28.

(A) diagonal matrix

(B) symmetric matrix

(C) identity matrix

(D) skew symmetric matrix

If $D = diag(d_1, d_2, d_3)$, where each of d_1, d_2, d_3 is non zero, then D^{-1} is 29.

(A) D

(B) $diag(d_1^{-1}, d_2^{-1}, d_3^{-1})$

(C) I_3

(D) Zero matrix

If $A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 7 & 9 \\ -2 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 & 5 \\ 1 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix}$, then trace (A-B) is equal to

(A) 70

(C) 3

(B) -3 (D) 2

If $\begin{vmatrix} 1+x & 1-x & 1-x \\ 1-x & 1+x & 1-x \\ 1-x & 1-x & 1+x \end{vmatrix} = 0$, then the solution set is 31.

(A) (1,3)

(B) (0,3)

(C) (0,1)

(D) -1, 3

32.	Let A and B are two independent events. The probability that both A and B occurs is $1/20$ and the probability that neither of them occurs is $3/5$. Then $P(A)$ and $P(B)$ are equal to
	- 10 1/4

(A) 1/2, 1/3

(B) 1/3, 1/4

(C) 1/4, 1/5

(D) 1/5, 1/4

33. Three numbers are chosen from 1 to 20. The probability that they are not consecutive is

(A) 186/190

(B) 187/190

(C) 188/190

(D) 189/190

34. If P(A) = x, P(B) = 2x, $P(A \cap B) = 1/2$ and $P(\overline{A} \cap \overline{B}) = 2/3$, then x is equal to

(A) 5/36

(B) 6/36

(C) 3/36

(D) 7/36

35. If $P(A \cup B)=1/2$ and $P(\bar{A})=2/3$, then $P(\bar{A} \cap B)$ is equal to

(A) 1/3

(B) 1/4

 $(C) \cdot 1/5$

(D) 1/6

36. When two dice are thrown, the probability of getting same numbers is

(A) 1/6

(B) 1/36

(C) 1/2

(D) 1/4

37. If A and B are events such that $P(A) = p_1$, $P(B) = p_2$, $P(A \cap B) = p_3$, then $P(\bar{A} \cup B)$ is equal to

(A) $1 - p_1 + p_2$

(B) $1-p_3$

(C) $1-p_1-p_2$

(D) $p_1 + p_2$

A box contains 10 tickets. 2 of the tickets carry a price of Rs.8/- each, 38. 5 of the tickets carry a price of Rs.4/- each and 3 of the tickets carry a price of Rs.2/- each. If one ticket is drawn, then the mean price is

> (A) Rs.3.40

Rs.2.80 (B)

(C) Rs.3.10

(D) Rs.4.20

A random variable X has the following probability distribution 39.

> -1 $X = x_1$ $P(X = x_1)$ (1-a)/4 (1+2a)/4 (1-2a)/4 (1+a)/4Then

(A) 'a' can have any real value (B) $1/4 \le a \le 1/3$

(C) $-1/2 \le a \le 1/2$

(D) $-1 \le a \le 1$

The probability that a man hits a target is 3/4. He tries 5 times. Then 40. the probability that he hits the target at least 4 times is

> (A) 81/256

(B) 81/128

5/128 (C)

(D) 1/128

The range of a random variable $X = \{1, 2, 3, ...\}$ and the probabilities 41. are given by $P(X=k)=c^k/k!$, c is constant and k=1, 2, ... Then c is equal to

(A) $\log_{10} 2$

 $(B) \log_e 4$

(C) $\log_{1/e}(1/2)$

(D) $\log_{1/e}2$

If the sum of the mean and variance of binomial distribution for 5 trials 42. is 1.8, then the binomial distribution is

(A) $(1/4 + 4/5)^5$ (C) $(2/3 + 1/3)^5$

(B) $(4/5 + 1/5)^5$ (D) $(1/3 + 2/3)^5$

If X has a Poisson distribution and P(X=2) = P(X=3), then the 43. mean of the distribution is

(A) 2

(C) 3

(B) 1 (D) 4

The difference between mean and variance of a binomial distribution 44. with n = 25 is 1. Then the value of p is

(A) 0.04

(B) 0.2

(C) 0.96

(D) 0.8

Let $X_1 \sim N(2,1)$ and $X_2 \sim N(3,2)$ and X_1 and X_2 be independent. 45. Then the distribution of $2X_1 + 3X_2$ is

(A) N(12, 15)

(B) N(15, 12)

(C) N(22, 13)

(D) N(13, 22)

A sufficient condition for an estimator T_n to be consistent for θ is that 46.

(A) $Var(T_n) \rightarrow 0 \text{ as } n \rightarrow \infty$

(B) $E(T_n) \rightarrow \theta \text{ as } n \rightarrow \infty$

(C) $\operatorname{Var}(T_n)/\operatorname{E}(T_n) \to 0 \text{ as } n \to \infty$

 $E(T_n) \to \theta$ and $Var(T_n) \to 0$ as $n \to \infty$

Which one of the following is used to reduce the sampling error in the 47. study of a heterogeneous population?

> Stratified sampling (A)

(B) Cluster sampling

Survey sampling (C)

(D) Census sampling

The numbers for which the AM is 8 and GM is $\sqrt{55}$ are 48.

(A) -11, -5

(B) 11, 5

(C) 55, 1

(D) 64,55

49.	Let	X_1	$, X_{2}, X_{n}$	be	a	random	sample	from	B(1,p).	Then	the
	consistent estimator of $p(1-p)$ is										

	-
(A)	V
(x)	Λ

(B) $\overline{\chi}^2$

(C)
$$\overline{X}(1-\overline{X})$$

(D) $n.\overline{X}$

50. The probability that a student is not a swimmer is 1/5. Out of 5 students, the probability that 4 are swimmers is

(A) 512/3125

(B) 64/3125

(C) 128/3125

(D) 256/3125

51. Empirical relation of averages is given by

(A) Mean-Mode=2(Mean-Median)

(B) Mean-Mode=3(Mean-Median)

(C) Mean-Mode=4(Mean-Median)

(D) Mean-Mode=Median

52. The mean of the following distribution is

x: 1

0808000

 f_x :

2

.. n

(A) $\frac{n}{2}(n+1)$

(B) $\frac{n}{6}(n+1)(2n+1)$

(C) 1

(D) $\frac{2n+1}{3}$

53. The point of intersection of the two types of ogives is the

(A) First quartile

(B) Second quartile

(C) Third quartile

(D) Fourth quartile

54.	The m	ean of a series is 10 and it	ts CV	is 40%. The variance of the
	(A) (C)		(B) (D)	8 16
55.	The reg	gression coefficient is indepe	ndent (of
	· (A)	Origin	(B)	Scale
	(C)		(D)	Neither origin nor scale
56.	If Var($(X) = 1$, then $Var(2X \pm 3)$ is		
	(A)	5	(B)	13 .
	(A)	47	(D)	
57.	A and	B are independent events s	uch th	at $P(A) = 0.7$, $P(B) = k$ and
	$P(A \cup$	B) = 0.8. Then k is,		
	(A)	5/7	(B)	2/7
	(C)	0.1	(D)	1/3
58.	Which	of the following is false?		9.
	(A)	The normal distribution is a	mimod	lal
	(B)	The normal curve is bell sh	aped	7.5
	(C)	The skewness for normal d	istribut	tion is not zero
	(D)	Mean = mode = median fo	r a nor	mal distribution
59.	The prorough	bability that the sum of the	e score	es is 11, when two dice are
	(A)	1 .	/m :	1 "
	(A)	6	(B)	12
	(A) (C)	$\frac{1}{18}$	(D)	$\frac{1}{12}$ $\frac{1}{36}$

Which of the following are valid statements for the binomial 60. distribution?

(A) np = 4; npq = 8

np = 16; npq = 3/2(B)

(C) n=4; p=q=1/2

(D) np = 10; npq = 20.5

Let $X \sim U(2,5)$. Then the variance X is equal to 61.

(B) $\frac{7}{2}$ (D) $\frac{3}{4}$

The pdf of a random variable X is f(x) = k(2-x); 0 < x < 2. Then k 62. is

(C) 1

The characteristic function of the Poisson distribution with parameter 63. λ is

(A) $e^{\lambda(it-1)}$

(B) $e^{\lambda(e^{it}-1)}$ (D) $e^{-\lambda it}$

(C) $e^{\lambda it}$

The pdf of normal distribution is given by $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(X-5)^2}$. The 64. mean and variance are respectively

(A) 5, 1

(B) 25, 1

(C) 0, 1

(D) 1,0

			x^2		
65.	The value of	$\int_0^\infty e^{-\frac{\pi}{2}}$	2	dx	is

(A) $\sqrt{2\pi}$

(B) 1

(C) $\sqrt{\pi}$

(D) 0

- French associated with the (A) Binomial distribution is Mathematician Bernoulli
- In a binomial distribution the mean is greater than variance (B)
- If p=q=1/2, then the distribution is not symmetric (C)
- The binomial distribution is a discrete distribution
- Which of the following statements is always true regarding regression 67. coefficients b_{yx} and b_{xy} ?
 - (A) $b_{yx} > 0$

(C) $b_{yx}b_{xy}=r$

(B) $b_{yx} < 0$ (D) $b_{yx}b_{xy} = r^2$

68. If
$$X \sim N(0,1)$$
, then $E(X^{7})$ is

(B) 1

(D) 2

69. If
$$X \sim P(\lambda)$$
 such that $P(X = 0) = P(X = 1)$, then $P(X = 2)$ is

(A) P(X=1)

(B) 2P(X = 1)

- (C) $\frac{1}{2}P(X=1)$
- (D) P(X = 3)

70. The moment generating function of the Uniform distribution U(a,b) is

(A)
$$\frac{e^{bt} - e^{at}}{t(b-a)}$$
(C)
$$\frac{e^b - e^a}{t(b-a)}$$

(B)
$$\frac{e^{bt} - e^{at}}{(b-a)}$$
(D)
$$\frac{e^t}{(b-a)}$$

(C)
$$\frac{e^b - e^a}{t(b-a)}$$

(D)
$$\frac{e^t}{(b-a)}$$

If X is a positive valued continuous random variable, then $P\left(X = \frac{1}{2}\right)$ 71. is

(A) 0

(B) $\frac{1}{2}$

(C) $\frac{1}{4}$

(D) 1

For which of the following distributions mean does not exist? 72.

> Normal (A)

(B) Exponential

Cauchy (C)

(D) Uniform

Among the following, which distribution has "lack of memory 73. property"?

> **Binomial** (A)

Poisson (B)

Geometric (C)

Cauchy (D)

Which of the following statements is true? 74.

- (A) $(A \cup B)^c = A^c \cup B^c$ (B) $(A \cap B)^c = A^c \cap B^c$ (C) $(A \cup B) = A \cup (A \cap B^c)$ (D) $(A^c \cap B)^c = A \cup B^c$

75.	Which	of the statements is false?							
	(A)) The probability of an impossible event is zero							
	(B)	A and B are independent then so is A and B^c							
	(C)	A and B are independent	implies	they are disjoint					
	(D)	Probability lies between 2	zero and	one inclusive					
76.	A box of without ball is	contains 3 red and 4 black to replacement. The probability	oalls. T	wo balls are drawn at random getting one black ball and red					
	(A)	12/21	(B)	1/35					
	(C)	1/2	(D)						
77.	The for	mula for inter quartile rang	e is						
	(A)	$Q_3 - Q_1$	(B)	$Q_3 + Q_1$					
	(C)	$(Q_3-Q_1)/2$	40	$(Q_3 + Q_1)/2$					
78.	The dis	stribution function defined X is	by <i>F</i> ($(x) = P(X \le x)$ of a random					
	(A)	always continuous	(B)	always left continuous					
	(C)	at least right continuous	(D)	at least left continuous					
79.	Which o	one of the following is not a	a measu	re of central tendency?					
	(A)	Mean	(B)	Variance					
	(C)	Median	(D)	Mode					

80. The arithmetic mean of the squares of first n natural number is

$$(A) \quad \frac{(n^2+1)2n}{6}$$

(B)
$$\frac{(2n^2+1)2n}{6}$$

(C)
$$\frac{n^2(2n+1)}{6}$$

(D)
$$\frac{(n+1)(2n+1)}{6}$$

Consider a sample of five observations (-4, -2, 0, 2, 9). The 81. geometric mean is

(A)

(B) positive

negative

(D) imaginary

The mean of a set of observations is 42. If each observation is divided 82. by 3 and 5 is added to each, the mean becomes

> (A) 14

19 (C)

(B) 9 (D) 47

The mean of a set of 12 observations is 5. To this set another 8 observations having mean 2 is added. The mean of the combined set is 83.

(A) 3.8

(C) 4.0

Let G_1 and G_2 be the geometric means of X's and Y's based on n values respectively. The geometric mean of the combined sample of 2n 84. observations is

(A) G_1G_2

 $(B) \quad \frac{G_1 + G_2}{2}$

(C) $\frac{G_1}{G_2}$

(D) $\sqrt{G_1G_2}$

3								20	
85.	The me	dian of the observations 2	1	7	6	9	13	10	is
	(A)		(B)	6					
	(C)	13	(D)	48	17				
86.	The me	an deviation is minimum abo	out						
	(A) (C)	mean first quartile	(B)		ode				
	(C)	mst quarme	(D)	me	dian	l			
87.	In a dist	tribution, the kurtosis measu	res			•			
	(A)	the peakedness	(B)	syn	nme	try			
	(C)	dispersion	(D)	ce	ntral	tende	ency		
88.	The me	ean height of 10 students i	s 165	cms	and	l star	ıdard	devi	ation
	5 cms.	The coefficient of variation	is						
	(A)	3 cms	(B)	3					
	(C)	3300	(D)	33	00 cı	ns			
89.		adom variable X has mean 1 an, variance) given by	0 and	var	iance	e 2, t	hen Y	= 42	<i>Y</i> + 2
	(A)	(40,30)	(B)	(10),32)				
	(C)	(42,30)	(D)	(42	2,32)				
90.		stribution, fourth central me e distribution is	oment	is 4	8 an	d sta	ndard	dev	iation
	(A)	Normal	(B)	Le	ptok	urtic			
	(C)	Platikurtic	(D)	Ex	pone	ential			
91.	In a ur distribut	nimodal distribution, mean	is s	mall	er t	han	the r	node	. The
	(A)	Positively skewed	(B)	Ne	egati	vely	skewe	ed	
	(C)	Symmetrical	(D)		100	10.00	abov		

(C) 5

_		
92.	To fit a third degree polyn	omial, the number of normal equations is
	(A) 4 (C) 2	(B) 3 (D) 5
93.	For two random variables two regression lines inters	(X,Y) with means \overline{X} and \overline{Y} respectively, the sect at the point
	(A) $(\overline{X},0)$	(B) $(\overline{X}, \overline{Y})$
	(C) $(0,\overline{Y})$	(D) (0,0)
94.	Covariance between X as Y is 16. Then the correla	and Y is 9.6; variance of X is 9 and variance of tion coefficient is
	(A) 0.2 (C) 0.9	(B) 0.8 (D) 1
95.	For two attributes A , B , Then $(\alpha\beta)$ is	(A) = 47, $(B) = 40$, $(AB) = 15$ and $N = 80$.
	(A) 12 (C) 8	(B) 21 (D) 32
96.	The regression equation Then regression coeffic	is are given by $5x = 22 + y$ and $64x = 24 + 45y$ ient b_{yx} is
÷	(A) $\frac{1}{5}$ (C) 5	(B) $\frac{45}{64}$ (D) $\frac{64}{45}$
	(C) 5	(D) $\frac{64}{45}$

For (X,Y), $r_{xy} = -\frac{1}{2}$. If $b_{xx} = -\frac{1}{8}$, then b_{xy} is

(A) -4 (C) -2

(B) 4 (D) 2

The two regression lines of x, y will coincide if r_{xy} is equal to 98.

(A) = 0

(B) 1

(C) $\frac{1}{2}$

(D) $-\frac{1}{2}$

The correlation coefficient between x and y is -0.4. The correlation 99. coefficient between 3x and 2y is

(A) - 0.6

(B) 0.9

(C) - 0.4

(D) 0.2

The limits of correlation coefficient are 100.

(A) [-1,1]

(B) (-1,1)

(C) (-1,0)

(D) $(-\infty, \infty)$

The regression coefficient of X on Y is -1/6 and that of Y on X is -3/2. 101. Then the correlation coefficient is

(A) - 0.5

(B)

(C) 1

(D) 0.5

The rank correlation coefficient was given by 102.

(A) Fisher

(B) Rao

(C) Neyman

(D) Spearman

103. The rank correlation for the following data on ranks given by two judges for 5 contestants is:

Contestants	1	2	3	4	5
Judge 1	5	4	3	2	1
Judge 2	1	. 2	3	4	5

- (A) 0 (C) 1
- Two events A and B are such that $A \cap B = \phi$. Then they are 104.
 - (A) mutually exclusive events
 - (B) independent events
 - mutually exclusive and exhaustive (C)
 - impossible events (D)

The probability of three independent events are $P(A) = \frac{2}{3}$, $P(B) = \frac{3}{4}$ 105. and $P(C) = \frac{1}{5}$. Then $P(A \cup B \cup C)$ is equal to

(C) $\frac{14}{15}$

Let $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(A \cap B) = \frac{1}{4}$. Then $P(A/A \cup B)$ is equal to 106.

(A) $\frac{1}{2}$ (C) $\frac{3}{4}$

If P(E/F) = P(E), then P(F/E) is

(A) P(F)(C) $P(E \cup F)$

(B) $P(E \cap F)$ (D) P(E) + P(F)

A continuous random variable X has p.d.f.

$$f(x) = \begin{cases} k & \text{, } 0 \le x \le 1 \\ 0 & \text{, otherwise.} \end{cases}$$

The value of k is

- (A) $\frac{2}{3}$

- (B) 1
 (D) $\frac{3}{4}$

A continuous random variable X has p.d.f. $f(x) = 3x^2$ $0 \le x \le 1$. If $P(X \le a) = P(X > a)$, the value of a is

(B) $\left(\frac{1}{2}\right)^{1/3}$

(D) $\frac{3}{4}$

If X has a uniform distribution on $[0,\beta]$, then its distribution function is

(A) βx

(C) $\frac{\beta}{x}$

111. Let $(X_1,...,X_n)$ be a random sample from a normal population $N(\mu, \sigma^2)$. The standard error of $\overline{X} = \sum_{i=1}^{n} X_i / n$ is

(A)
$$\frac{\sigma}{\sqrt{n-1}}$$

(B)
$$\frac{\sigma}{\sqrt{n}}$$

(C)
$$\frac{n\sigma^2}{\sqrt{(n-1)}}$$
.

(D)
$$\sigma\sqrt{n}$$

Let $(X_1,...,X_n)$ be a random sample from a normal distribution 112. $N(\mu, \sigma^2)$. An unbiased estimator of σ^2 is

(A)
$$\frac{1}{\sqrt{n}} \sum_{1}^{n} X_i^2$$

$$(B) \quad \frac{n}{n-1} \sum_{i=1}^{n} X_{i}^{2}$$

(C)
$$\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$$

(D)
$$\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$$

If X has a chi-square distribution with 10 d.f., then variance of X is 113.

(A) 20 (C) 10

(B) 18 (D) 16

Let X and Y be two independent χ^2 variables. Which of the following 114. also has χ² distribution?

(A) X/Y (C) X+Y

(B) X-Y (D) XY

W.S. Gossett gave which of the following distributions? 115.

(A) t

(B) χ^2

(C) F

(D) normal

Let X and Y be independent χ^2 variables with m and n d.f. respectively. 116. The following has F distribution with (m,n) df.

(A) $\frac{mX}{nY}$

(B) $\frac{nX}{mY}$

(C) $\frac{X+m}{Y+n}$

(D) $\frac{X+n}{Y+m}$

Let X have F distribution with (4,8) d.f. The distribution of 1/X will be 117.

(A) F with (8,4) d.f. (B) χ^2 on 4 d.f. (C) t on (12) d.f. (D) F with (3,5) d.f.

(C) t on (12) d.f.

For testing independence of two attributes in a (m,n) contingency table, 118. the degrees of freedom of χ^2 is

(A) m + n - 1

(B) mn-1

(C) (m-1)(n-1)

(D) m-n

 χ^2 test is used for 119.

- (A) testing a single population variance
- (B) testing a single population mean
- (C) testing the equality of two population
- testing the equality of two population variance

From two independent normal distributions $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, 120. two random samples of sizes 10 and 20 are taken. For testing equality of means μ_1, μ_2 , the d.f. for the t-test is

(A) 30

(B) 29

(C) 31

(D) 28

121.	It is desired to test the hypothesis, based on a random sample of size 20 , H_0 : mean = 0 in a normal population. The appropriate test would be
------	--

(A) t - test

(B) χ^2 - test (D) Z-test

(C) F-test

122. For testing $H_0: \rho = 0$ in a bivariate normal distribution $BN(\mu_1, \mu_2, \sigma_1, \sigma_2 \rho)$, the test used is

(A) χ^2 - test (C) F - test

(B) t-test

(D) Z-test

For testing equality of two population variances, the test used is 123.

(A) t-test

(B) $\chi^2 - \text{test}$ (D) Z-test

(C) F - test

The F distribution is 124.

- (A) positively skewed
- (B) negatively skewed
- symmetrical (C)
- (D) based on negative valued random variable.

In a simple hypothesis 125.

- (A) the distribution is completely determined
- (B) is two sided
- (C) the distribution is not completely determined
- (D) is one sided

126.	For a	normal	distribution	$N(\mu,\sigma^2)$,	the	following	hypothesis	18
	compo			ribution $Nig(\mu,\sigma^2ig)$, the following hypothesis is				

(A) $\mu = 0, \ \sigma = 4$

(B) $\mu > 0$, $\sigma = 2$ (D) $\mu = 4$, $\sigma = 9$

(C) $\mu = 2, \sigma = 1$

For testing H_0 against H_1 , the second kind of error is 127.

(A) $P(Accept H_0/H_1 true)$

(B) P(Reject H₀/H₀ true)

(C) $P(Accept H_0/H_0 true)$

(D) $P(\text{Reject } H_0/H_1 \text{ true})$

If $H_0: \mu = 0$ and $H_1: \mu = 4$, the power of a test is 128.

(A) $P(\text{Acc. } H_0/\mu = 0)$

(B) $P(\text{Rej.}: H_0/\mu = 0)$

(C) $P(\text{Rej. } H_0/\mu = 4)$.

(D) $P(\text{Acc. } H_0/\mu = 4)$

testing $H_0: \theta = 5$ against $H_1: \theta = 10$ in the p.d.f. 129. $f(x;\theta) = \frac{1}{2}e^{-x/\theta} (x \ge 0)$ one observation X is taken and the critical region is $X \ge 15$. The probability of type II error is

(A) $e^{5/2}$

(B) $1-e^{-3/2}$

(C) 1-e-4

The level of significance of a test is also known as 130.

(A) critical region

(B) ·power

(C) size

(D) standard error

The theorem which provides most powerful critical region for testing a 131. simple hypothesis against a simple alternative is known as

(A) Neyman Pearson lemma

(B) Cramer-Rao inequality

(C) Wald's lemma

(D) Neyman Fisher Factorization theorem

				¥.*	
132.	For test	sing $H_0: \mu = 4$ in a normable only if	l distribut	tion $N(\mu, \sigma^2)$, the	t-test is
	(1)	Particular of the second	of Factor		
		$\sigma = 1$		$\sigma = 4$	
	(C)	σ known	(D)	σ unknown	
133.	The m	ost appropriate test for	testing	$H_0: \sigma^2 = \sigma_0^2 \text{ in a}$	normal
	distribu	tion $N(\mu, \sigma^2)$ is		eta ali 7fg eterani Di	
	(A)	χ^2 – test	(B)	t – test	
		\tilde{F} – test		z test	
134.	Which	one of the following is no	t a sampli	ng distribution?	
	(A) (C)	nanana saa ninaa		F-distribution Exponential distri	bution
135.	For tes	ting $H_0: \mu_1 = \mu_2$ in two i	ndepende	ent normal distribu	tions with
		n variance, two randor			
		0, $\overline{X}_2 = 1205$ and $s = 23$.		The state of the s	es redi
	(4)	50	(P)	7.7	
	(A)	7.54 years all around			
	(C)	7.34 Programma (all the first of the first o	(D)	25	
136.	Sequen	tial probability ratio test	was giver	ı by	84.
	(4)	Wald	(B)	Fisher	
	(A)			Chebychev	
	(C)	Clamor	(2)	Chebyonov	
137.	To test	the randomness of a sam	ple, the f	following test is use	ed
	(4)	Sign test	(B		
	(A)	Median test	(D	The summer see your	
	(C)	IATEGISTI 1091	(L)	7 1-1031	

:38	Which	of the following distribution:	n is idei	ntified by a pair of degrees of
		Chi square distribution F distribution	(B) (D)	t distribution Normal distribution
139.	Histog	ram is suitable for the data p	resente	d as
	(A)	continuous grouped freque	ency dis	tribution
	(B)	discrete grouped frequenc	y distrib	oution
	(C)	individual series		
	(D)	All of the above		
140.	The id	ea of posterior probability w	vas intro	oduced by
	(A)	Pascal	(B)	Peter and Paul
	(C)	Rev. Fr. Thomas Bayes	(D)	M. Loe've
141.	Circula	er systematic sampling is use	ed when	
	(A)	N is a multiplie of n	· (B)	N is a whole number
	(C)	N is not divisible by n	(D)	None of the above
142.	Sampl	ing error can be reduced by		
	(A)	choosing a proper probabi	lity sam	pling
		selecting a sample of adeq		
	(C)	using a suitable formula for	or estim	ation
	(D)	All of the above		
143.	The ten	n ANOVA was introduced	by	
	(A)	Karl Pearson	(B)	R.A. Fisher
	(C)	C.R. Rao	(D)	Spearman
	17 10		(-)	Spearman

144.	The number of hypothesis	tested	in an	ANOVA	pertaining	to	a	two
	way classification is							

(A)	
IAI	
(A A)	

(B) 3

(C) 2

(D) None of the above

145.	Replication	in an	experiment	eliminates
		TAT COTT	CADCIMICIT	CHILINATES

- (A) human bias
- (B) completion among neighbouring plots
- (C) heterogeneity among blocks
- (D) None of the above

146. In an estimator T_n of population parameter Θ converges in probability to Θ as $n \to \infty$. Then T_n is said to be

(A) sufficient

(B) efficient

(C) consistent

(D) unbiased

147. Factorisation theorem for sufficiency is known as

17

- (A) Rao-Blockwell theorem
- (B) Crammer-Rao inequality
- (C) Chapman-Robins theorem
- (D) Neyman-Fisher theorem

148. If x_1, x_2, x_n be a random sample from an infinite population where $S^2 = \frac{1}{n} \sum_i (x_i - \overline{x})^2$. The unbiased estimator for the population variance σ^2 is

$$(A) \quad \frac{1}{n-1}S^2$$

(B) $\frac{1}{n}S^2$

$$(C) \quad \frac{n-1}{n}S^2$$

(D) $\frac{n}{n-1}S^2$

149.	Consumer	price	index	is	also	known as
147.	Consumer	Price	macx	19	aiso	KIIUWII as

- (A) value index
- (B) cost of living index
- (C) quantity index
- (D) price index

150. The curve showing the probability of accepting a lot is known as

(A) OC Curve

- (B) ASN Curve
- (C) Compertz Curve
- (D) AQL Curve
