

TEST BOOKLET No.

146

#### TEST FOR POST GRADUATE PROGRAMMES

#### **ELECTRONIC SCIENCE**

Time: 2 Hours

Maximum Marks: 450

#### INSTRUCTIONS TO CANDIDATES

- 1. You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Answer Sheet. Read carefully all the instructions given on the Answer Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- 3. Also write your Roll Number, Test Code, and Test Subject in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with a Ball Point Pen.
- 4. The paper consists of 150 objective type questions. All questions carry equal marks.
- 5. Each question has four alternative responses marked A, B, C and D and you have to darken the bubble corresponding to the correct response fully by a Ball Point Pen as indicated in the example shown on the Answer Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- Space for rough work is provided at the end of this Test Booklet.
- 8. You should return the Answer Sheet to the Invigilator before you leave the examination hall. However, you can retain the Test Booklet.
- 9. Every precaution has been taken to avoid errors in the Test Booklet. In the event of any such unforeseen happening, the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be taken at the time of evaluation, if necessary.



### ELECTRONIC SCIENCE

| 1. | An intrinsic semiconductor at the absolute zero temperature                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------|
| 10 | (A) behaves like a metallic conductor                                                                                 |
|    | (B) behaves like an insulator                                                                                         |
|    | (C) has a large number of holes                                                                                       |
|    | (D) has a large number of electrons                                                                                   |
| 2. | At room temperature, the current in an intrinsic semiconductor is due                                                 |
|    | to                                                                                                                    |
|    | (A) Holes (B) Electronics                                                                                             |
|    | (C) Ions (D) Holes and Electronics                                                                                    |
| 3. | In an n-type semiconductor, as temperature T increases, the Fermi level $\mathrm{E}_{\mathrm{F}}$                     |
|    | (A) moves towards conduction band                                                                                     |
|    | (B) moves towards middle of forbidden energy gap                                                                      |
|    | (C) does not vary                                                                                                     |
|    | (D) may or may not shift depending upon the concentration of                                                          |
|    | donor atoms                                                                                                           |
| 4. | Ratings on a capacitor are given 25µF, 12 V. Also a minus sign is written near one of its terminals. The capacitor is |
|    | (A) Mica capacitor (B) Ceramic capacitor                                                                              |
|    | (C) Electrolytic capacitor (D) Paper capacitor                                                                        |
| -  | Which of the following doping will produce a p-type semiconductor?                                                    |
| 5. |                                                                                                                       |
|    | (A) Germanium with phosphorus (B) Silicon with germanium                                                              |
|    | (C) Germanium with antimony (D) Silicon with indium                                                                   |
| 6. | Which of the following is an active device?                                                                           |
|    | (A) An electric bulb (B) A resistor                                                                                   |
|    | (C) A.BJT (D) A transformer                                                                                           |
|    |                                                                                                                       |

| 7.  | A virtua                 | A virtual ground                                                                                                                   |            |                                    |  |  |  |
|-----|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|--|--|--|
|     | (A)<br>(B)<br>(C)<br>(D) | is ground for current                                                                                                              |            |                                    |  |  |  |
| 8.  | The pro                  | ogram used to convert mnemo                                                                                                        | onics t    | o machine code is                  |  |  |  |
|     | (A)<br>(C)               | Fortan<br>Assembler                                                                                                                | (B)<br>(D) | C++<br>Opcode                      |  |  |  |
| 9.  |                          | istor is said to be in                                                                                                             | reg        | gion when both the junctions       |  |  |  |
|     | (A)                      | active                                                                                                                             | (B)        | saturation                         |  |  |  |
|     | (C)                      |                                                                                                                                    | (D)        | passive                            |  |  |  |
| 10. | Loading                  | g effect of a voltmeter can be                                                                                                     | reduc      | ed by                              |  |  |  |
|     | (A)<br>(B)<br>(C)<br>(D) | increasing the load resistant<br>increasing the internal resist<br>decreasing the load resistant<br>decreasing the internal resist | tance o    | *                                  |  |  |  |
| 11. | The hig                  | hest voltage gain can be obta                                                                                                      | ined f     | rom which of the following?        |  |  |  |
|     | (A)<br>(C)               | CB configuration CC configuration                                                                                                  | (B)<br>(D) | CE configuration All of the above  |  |  |  |
| 12. | Power g                  | gain of emitter follower usua                                                                                                      | lly is     |                                    |  |  |  |
|     | (A)<br>(C)               | Unity<br>More than one                                                                                                             | (B)<br>(D) | Less than one<br>None of the above |  |  |  |
| 13. | Ripple 1                 | factor of a half wave rectifier                                                                                                    | ris        |                                    |  |  |  |
|     | (A)<br>(C)               | more than two<br>less than one                                                                                                     | (B)<br>(D) | more than one zero                 |  |  |  |



| 14. | The sel                                        | lf-destruction of an unsta<br>ture is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | abilised t   | ransistor due to rise in              |  |  |
|-----|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------|--|--|
|     | (4)                                            | Thormal ninaway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B) I        | Heat dissipation                      |  |  |
|     |                                                | Thermal runaway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( )          | Q-factor                              |  |  |
|     | (C)                                            | Thermocouple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (12)         | <b>2</b>                              |  |  |
| 15. | A Bark-                                        | Hausen criterion for oscilla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ator stabili | ty is                                 |  |  |
|     | (4)                                            | $A\beta = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (B) A        | $A\beta = 1$                          |  |  |
|     | (C)                                            | $-A\beta = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (D) -        | $A\beta = 1$ $A\beta = 0$             |  |  |
|     | (C)                                            | -Ap - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (2)          |                                       |  |  |
| 16. | In Freq<br>time bu                             | uency Division Multiplexit each occupies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng, all sig  | gnals are sent at the same ency band. |  |  |
| ×   | (4)                                            | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) d        | lifferent                             |  |  |
|     | (A)                                            | same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( )          | None of the above                     |  |  |
|     | (C)                                            | either (A) or (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D) 1        | tone of the above                     |  |  |
| 17. | In JFET operating above pinch-off voltage, the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                       |  |  |
|     | (A)                                            | ID remains practically cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istant       |                                       |  |  |
|     | (B)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                       |  |  |
|     |                                                | I <sub>D</sub> increases rapidly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                                       |  |  |
|     | (D)                                            | depletion region becomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | smaller      |                                       |  |  |
|     | (2)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                       |  |  |
| 18. | What is                                        | s the binary equivalent of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne decima    | l number 465?                         |  |  |
|     | (A)                                            | 111010001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B)          | 110110000                             |  |  |
|     | (C)                                            | 111010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (D)          | 111100000                             |  |  |
|     | (0)                                            | 111010000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2)          |                                       |  |  |
| 19. | How m                                          | any Flip-Flops are require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d for mod    | l–16 counter?                         |  |  |
|     | (4)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (B)          | 6                                     |  |  |
|     | (A)                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D)          | 1 1311 (24)                           |  |  |
|     | (C)                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (D)          | That is called                        |  |  |
| 20. | EPRO                                           | M contents can be erased b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | y exposir    | ng it to                              |  |  |
|     |                                                | and the state of t | (D)          | in from all nave                      |  |  |
|     | (A)                                            | ultraviolet rays                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (B)          | infrared rays                         |  |  |
|     | (C)                                            | burst of microwaves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (D)          | intense heat radiations               |  |  |
|     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                       |  |  |

| 21.  | A ring counter consisting of five Flip-Flops will have |                                                      |           |                                  |
|------|--------------------------------------------------------|------------------------------------------------------|-----------|----------------------------------|
|      |                                                        |                                                      | (B)       | 10 states                        |
|      | (A)                                                    | 5 states                                             |           | infinite states                  |
|      | (C)                                                    | 32 states                                            | (D)       |                                  |
| 22.  | The 2's                                                | complement of the number                             | 001001    | 1 is                             |
| LL.  | 1110 2 3                                               |                                                      |           |                                  |
|      | (A)                                                    | 0101110                                              | (B)       | 0111110                          |
|      | (C)                                                    | 0110010                                              | (D)       | 1101101                          |
| 23.  | The gat                                                | es required to build a half a                        | dder are  |                                  |
|      | (A)                                                    | EX-OR gate and NOR gat                               | :e        | 361                              |
|      | (B)                                                    |                                                      | te        |                                  |
|      | (C)                                                    | EX-OR gate and OR gate                               |           |                                  |
|      | (D)                                                    | Four NAND gates                                      | •         |                                  |
| .24. |                                                        | ode where all successive nor by single bit is        | umbers    | differ from their preceding      |
|      | (A)                                                    | Binary code                                          | (B)       | BCD                              |
|      | (C)                                                    | Excess – 3                                           | (D)       | Gray                             |
| 25.  |                                                        | input to T-flip-flop is 100 H<br>flops in cascade is | Iz signa  | l, the final output of the fourb |
|      | (A)                                                    | 1000 Hz                                              | (B)       | 100 Hz                           |
|      | (C)                                                    |                                                      | (D)       |                                  |
| 26.  | The d                                                  | igital logic family which ha                         | s the lov | west propagation delay time is   |
|      | (A)                                                    | ECL                                                  | (B)       | TTL                              |
|      | (C)                                                    |                                                      | (D)       |                                  |
| 27.  | The d                                                  | evice which changes from s                           | serial da | ta to parallel data is           |
|      | (A                                                     | ) Counter                                            | (B        | ) Multiplexer                    |
|      | (C                                                     |                                                      | (D        | Ficitor                          |
|      | , -                                                    | •                                                    | ,         | ,                                |



|         |       | D converter who of bits is | ose conver    | sion 1  | time is indep    | endent of   | the   |
|---------|-------|----------------------------|---------------|---------|------------------|-------------|-------|
| (       | (A)   | Dual slope                 |               | (B)     | Counter type     |             |       |
|         | (C)   |                            | ion -         | (D)     | TO THE           | proximatio  | on    |
| 29. The | exc   | ess 3 code of dec          | cimal numbe   | r 26 i  | 5                |             |       |
|         | (A)   | 0100 1001                  |               | (B)     | 01011001         |             |       |
|         | (C)   | 1000 1001                  |               | (D)     | 01001101         |             |       |
| 0. Wh   | ich ( | of the following           | nemories sto  | ores th | ne most numbe    | er of bits? |       |
| (       | (A)   | 5M×8 memory                |               | (B)     | 1M ×16 men       | nory        |       |
|         | (C)   |                            |               | (D)     | 12M×1mem         |             |       |
|         | 200   | al ICs, Schottky to        | ransistors ar | e pre   | ferred over no   | rmal transi | stors |
| (       | (A)   | lower propagati            | on delay      |         |                  | 10000       |       |
|         | B)    | higher propagat            |               |         |                  |             |       |
| (       | (C)   | lower power dis            |               |         |                  |             |       |
| 07      | (D)   | higher power di            | ssipation     |         |                  |             |       |
| 2. The  | acc   | ess time of ROM            | I using bipo  | lar tra | insistors is abo | out         |       |
| (       | (A)   | 1 sec                      |               | (B)     | 1 msec           |             |       |
| •       |       | 1 μsec                     |               | (D)     | 1 nsec           |             |       |
| 3. Wh   | ich i | s non resonant a           |               |         |                  |             |       |
| (       | (A)   | Marconi                    |               | (B)     | Rhombic          | 13          |       |
|         |       | Yagi-Uda                   |               | (D)     |                  | OF S        |       |
|         |       |                            |               |         |                  | E WOIL      | On    |

| 34. | For a t | ransmission line terminate                                                                                                        | ed in it              | s characteristic impedance,<br>ct? |  |  |  |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|--|--|--|
|     | which o | f the following statement is                                                                                                      | incorre               | CI!                                |  |  |  |
|     |         | <ul> <li>(A) It is a smooth line</li> <li>(B) The energy distribution between magnetic and electric field is not equal</li> </ul> |                       |                                    |  |  |  |
|     | (C)     | Standing wave does not ex                                                                                                         | cist<br>of now        | er is maximum                      |  |  |  |
|     | (D)     | Efficiency of transmission                                                                                                        | or pow                |                                    |  |  |  |
| 35. | Radiati | on resistance of a $\lambda/2$ dipole                                                                                             | eis                   | 25                                 |  |  |  |
|     | (A)     | 73 ohm                                                                                                                            | (B)                   | 75 ohm .                           |  |  |  |
|     | (A)77A  | 120 π ohm                                                                                                                         | (D)                   | 377 ohm                            |  |  |  |
| 36. | The do  | minant mode of rectangular                                                                                                        | wave g                | uide is                            |  |  |  |
|     | (A)     | TEII                                                                                                                              | (B)                   | $TM_{11}$                          |  |  |  |
|     |         | TE 01                                                                                                                             | (D)                   | TE <sub>10</sub>                   |  |  |  |
| 37. | Depth   | of penetration in free space                                                                                                      | is                    |                                    |  |  |  |
|     | (A)     | α                                                                                                                                 | (B)                   | 1/α                                |  |  |  |
|     | (C)     |                                                                                                                                   | (D)                   | ∞                                  |  |  |  |
| 38. | For a 3 | 00Ω antenna operating with                                                                                                        | h 5A of               | current, the radiated power is     |  |  |  |
|     | (A)     | 7500 W                                                                                                                            | (B)                   | 750 W                              |  |  |  |
|     |         | 75 W                                                                                                                              | (D)                   | 7500 mW                            |  |  |  |
| 39. | The lo  | ower cut-off frequency of sions (3×4.5 cm) operating                                                                              | a rectan<br>g at 10 C | gular waveguide with inside        |  |  |  |
|     | (A)     | 10 GHz                                                                                                                            | (B)                   | 9 GHz                              |  |  |  |
| 0 2 | (C)     | 10/9GHz                                                                                                                           | (D)                   | 10/3GHz                            |  |  |  |
| 40. | How r   | nany op-amps are required                                                                                                         | to imple              | ement this equation $V_0 = V_1$ ?  |  |  |  |
|     | (A)     | ) Four                                                                                                                            | (B)                   | Three                              |  |  |  |
|     | (C)     | Two                                                                                                                               | (D)                   | One                                |  |  |  |



| 41. | A difference between a passive filter and an active filter is that passive filter uses amplifier(s), but an active filter does not. This is                                            |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | <ul> <li>(A) True</li> <li>(B) False</li> <li>(C) True in the case of Butter worth filter</li> <li>(D) True in the case of Chebyshev filters</li> </ul>                                |  |  |  |  |  |
| 42. | Higher band widths are possible in                                                                                                                                                     |  |  |  |  |  |
|     | <ul> <li>(A) mono mode step index fiber</li> <li>(B) multimode step index fiber</li> <li>(C) multimode graded index fiber</li> <li>(D) All of the above</li> </ul>                     |  |  |  |  |  |
| 43. | In modulation bandwidth doubling and carrier power wasted are avoided.                                                                                                                 |  |  |  |  |  |
|     | (A) AM<br>(C) SSB (B) FM<br>(D) DSBSC                                                                                                                                                  |  |  |  |  |  |
| 44. | In a communication system, the noise is most likely to affect the signal                                                                                                               |  |  |  |  |  |
|     | (A) at the transmitter (B) in the channel (C) at the receiver (D) in the source                                                                                                        |  |  |  |  |  |
| 45. | Bandwidth of FM                                                                                                                                                                        |  |  |  |  |  |
|     | <ul> <li>(A) is greater than that of AM</li> <li>(B) is less than that of AM</li> <li>(C) is equal to that of AM</li> <li>(D) cannot predict</li> </ul>                                |  |  |  |  |  |
| 46. | Modems are used for carrying                                                                                                                                                           |  |  |  |  |  |
|     | <ul> <li>(A) digital data over digital line</li> <li>(B) digital data over analog line</li> <li>(C) analog data over analog line</li> <li>(D) analog data over digital line</li> </ul> |  |  |  |  |  |

| 47  | <ol> <li>In standing wave pattern on a transmission line</li> </ol> |                                                                                                                           |          |                                              |  |
|-----|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|--|
|     | (E<br>(C                                                            | voltage and current nodes voltage and current antine voltage nodes and current and voltage antinodes coi both (A) and (B) | ode coir | de<br>scide<br>odes as well as current nodes |  |
| 48. |                                                                     | h of the following is an nission?                                                                                         | advanta  | age to use fiber optic data                  |  |
| 49. | (B)<br>(C)<br>(D)                                                   | Resistance to the data the<br>Fast data transmission rate<br>Low noise level<br>All of the above                          | e        |                                              |  |
| 42. | which                                                               | among the following is not                                                                                                | a featur | re of Op-amp?                                |  |
|     | (A)                                                                 | High CMRR                                                                                                                 | (B)      | High gain                                    |  |
|     | (C)                                                                 | Low output impedance                                                                                                      | (D)      | Low input impedance                          |  |
| 50. | <ol> <li>Avalanche break down not happens in</li> </ol>             |                                                                                                                           |          |                                              |  |
|     | (A)                                                                 | Zener diode                                                                                                               | (B)      | Varactor diode                               |  |
|     | (C)                                                                 | Junction diode                                                                                                            |          | Both (B) and (C)                             |  |
| 51. | A full ripple fi                                                    | wave bridge rectifier is sur<br>requency will be                                                                          | plied v  | oltage at 50 Hz. The lowest                  |  |
|     | (A)                                                                 | 300Hz                                                                                                                     | (B)      | 200Hz                                        |  |
|     |                                                                     | 150Hz                                                                                                                     |          | 100Hz                                        |  |
| 52. | Quantiz                                                             | ation noise occurs in                                                                                                     |          |                                              |  |
|     | (A)                                                                 | TDM                                                                                                                       | (B)      | PCM                                          |  |
|     | (C)                                                                 | FDM                                                                                                                       | (D)      | WDM                                          |  |
|     |                                                                     |                                                                                                                           |          |                                              |  |
|     |                                                                     |                                                                                                                           |          |                                              |  |



| 53. | Which                                                                                                                                                                                                                                                 | Which of the following materials find application in MASER?                                                         |            |                                                  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------|--|--|--|
|     | (A)<br>(C)                                                                                                                                                                                                                                            | Ferrimagnetic<br>Ferromagnetic                                                                                      | (B)<br>(D) | Paramagnetic<br>Diamagnetic                      |  |  |  |
| 54. | The val                                                                                                                                                                                                                                               | ue of numerical aperture in o                                                                                       | ptical     | fibre is                                         |  |  |  |
|     | (A)<br>(C)                                                                                                                                                                                                                                            | Greater than 1<br>Equal to 1                                                                                        | (B)<br>(D) | Less than 1<br>Equal to ∞                        |  |  |  |
| 55. |                                                                                                                                                                                                                                                       | andwidth is needed for an Fl<br>CHz and handles audio signal                                                        | 10,000     | nal that has a peak deviation 200 Hz to 5 KHz?   |  |  |  |
|     | (A)<br>(C)                                                                                                                                                                                                                                            | 6 KHz<br>10 KHz                                                                                                     | (B)<br>(D) | 9.6 KHz<br>16 KHz                                |  |  |  |
| 56. | In FM,                                                                                                                                                                                                                                                | when frequency deviation do                                                                                         | ubled,     | , then                                           |  |  |  |
|     | (A)<br>(B)<br>(C)<br>(D)                                                                                                                                                                                                                              | modulation index is decreas<br>modulation index is doubled<br>modulation index halved<br>no change occurs in modula | la:        | ndex values                                      |  |  |  |
| 57. | What is                                                                                                                                                                                                                                               | SIM?                                                                                                                |            |                                                  |  |  |  |
|     | (A)<br>(C)                                                                                                                                                                                                                                            | Select Interrupt Mask<br>Set Interrupt Mask                                                                         | (B)<br>(D) | Sorting Interrupt Mask<br>Start Instruction Mode |  |  |  |
| 58. | Superpo                                                                                                                                                                                                                                               | osition theorem can be applied                                                                                      | d only     | to circuits having                               |  |  |  |
|     | (A)<br>(C)                                                                                                                                                                                                                                            | Resistive elements No-linear elements                                                                               | (B)<br>(D) | Passive elements<br>Linear bilateral elements    |  |  |  |
| 59. | An AM                                                                                                                                                                                                                                                 | An AM demodulator can be implemented with                                                                           |            |                                                  |  |  |  |
|     | <ul> <li>(A) a linear multiplier followed by low pass filter</li> <li>(B) a linear multiplier followed by high-pass filter</li> <li>(C) a diode followed by high pass filter</li> <li>(D) a linear multiplier followed by band-stop filter</li> </ul> |                                                                                                                     |            |                                                  |  |  |  |

| 60. | In a bipolar transistor, stability factor for a fixed bias circuit is given by   |                                                                                   |  |  |  |  |
|-----|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| 00. | (A) $S = 1/(1+\beta)$<br>(C) $S = (\beta - 1)^2$                                 | (B) $S = 1/(\beta - 1)$<br>(D) $S = \beta + 1$                                    |  |  |  |  |
| 61. | Phase Lock Loop (PLL) system is us                                               | sed for the detection of                                                          |  |  |  |  |
|     | (A) PM<br>(C) FM                                                                 | (B) AM<br>(D) QAM                                                                 |  |  |  |  |
| 62. | Which is the 8086 instruction that w                                             | vill form the 2's complement?                                                     |  |  |  |  |
|     | (A) ADD<br>(C) NOT                                                               | (B) CMP<br>(D) NEG                                                                |  |  |  |  |
| 63. | LXIH 4000 is an example of                                                       |                                                                                   |  |  |  |  |
|     | <ul><li>(A) Direct addressing mode</li><li>(C) Implied addressing mode</li></ul> | <ul><li>(B) Indirect addressing mode</li><li>(D) Immediate address mode</li></ul> |  |  |  |  |
| 64. | The status of flag cannot be                                                     | e checked.                                                                        |  |  |  |  |
|     | <ul><li>(A) auxiliary carry</li><li>(C) parity</li></ul>                         | (B) carry<br>(D) zero                                                             |  |  |  |  |
| 65. | In 8085, name the 16 bit register                                                |                                                                                   |  |  |  |  |
|     | <ul><li>(A) Stack pointer</li><li>(C) Both (A) and (B)</li></ul>                 | <ul><li>(B) Program counter</li><li>(D) Instruction register</li></ul>            |  |  |  |  |
| 66. | Fetching the next instruction while is known as                                  | le the current instruction is executing                                           |  |  |  |  |
|     | <ul><li>(A) DMA</li><li>(C) Parallel processing</li></ul>                        | <ul><li>(B) Pipelining</li><li>(D) Cache</li></ul>                                |  |  |  |  |
|     |                                                                                  |                                                                                   |  |  |  |  |

## Manman

| 67. Maximum number of I/O devices that can interface with 8085 is |                                                                                            |                                    | interface with 8085 is |                           |  |  |  |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|------------------------|---------------------------|--|--|--|
|                                                                   | (A)                                                                                        | 8                                  | (B)                    | 256                       |  |  |  |
|                                                                   |                                                                                            | 1024                               |                        | 512                       |  |  |  |
| 68.                                                               | When a                                                                                     | BJT operates in cut-off            |                        |                           |  |  |  |
|                                                                   | (A)                                                                                        | $V_{CE} = 0$                       | (B)                    | $V_{CE} = V_{CC}$         |  |  |  |
|                                                                   | (C)                                                                                        | V <sub>CE</sub> has negative value |                        | I <sub>C</sub> is maximum |  |  |  |
| 69.                                                               | Companding is used                                                                         |                                    |                        |                           |  |  |  |
|                                                                   | (A) to overcome quantizing noise in PCM                                                    |                                    |                        |                           |  |  |  |
|                                                                   | (B)                                                                                        | to protect small signals in        | PCM fi                 | om quantizing noise       |  |  |  |
|                                                                   | (C)                                                                                        |                                    |                        |                           |  |  |  |
|                                                                   | (D) to increase power content of the modulating signal                                     |                                    |                        |                           |  |  |  |
| 70.                                                               | A MOSFET is sometimes calledFET.                                                           |                                    |                        |                           |  |  |  |
|                                                                   | (A)                                                                                        | many gate                          | (B)                    | open gate                 |  |  |  |
|                                                                   |                                                                                            | insulated gate                     | (D)                    | shorted gate              |  |  |  |
| 71.                                                               | The emitter of a transistor is generally doped the heaviest because it                     |                                    |                        |                           |  |  |  |
|                                                                   | (A) has to dissipate maximum power                                                         |                                    |                        |                           |  |  |  |
|                                                                   | (B)                                                                                        |                                    |                        |                           |  |  |  |
|                                                                   | (C)                                                                                        |                                    |                        |                           |  |  |  |
|                                                                   | (D) must possess low resistance                                                            |                                    |                        |                           |  |  |  |
| 72.                                                               | The L                                                                                      | VDT is primarily used for t        | he meas                | urement of                |  |  |  |
|                                                                   | (A)                                                                                        | humidity                           | (B)                    | velocity                  |  |  |  |
|                                                                   | (C)                                                                                        |                                    | (D)                    | displacement              |  |  |  |
| 73.                                                               | As a result of introduction of negative feedback which of the following will not decrease? |                                    |                        |                           |  |  |  |
|                                                                   | (A)                                                                                        | Bandwidth                          | (B)                    |                           |  |  |  |
|                                                                   | (C)                                                                                        |                                    | (D)                    | ) Instability             |  |  |  |

| 74. | Which o       | of the following material is                                          | used fo                      | r infrared LEDs?                                             |
|-----|---------------|-----------------------------------------------------------------------|------------------------------|--------------------------------------------------------------|
|     | (A)<br>(C)    |                                                                       | (B)<br>(D)                   | Calcium Phospide<br>None of the above                        |
| 75. | Which day and | of the following remains un<br>l night?                               | affecte                      | d by changes on accounts of                                  |
|     |               | Ground wave<br>Tropospheric wave                                      | (B)<br>(D)                   |                                                              |
| 76. |               |                                                                       |                              | equal surface charge density<br>ne gap between the plates is |
|     | (B)           | Zero Same as that produced by of Double of the field produce Infinite |                              |                                                              |
| 77. | The ba        | sic process that's going on in                                        | nside a l                    | DSP chip is                                                  |
|     |               | Quantization<br>MAC                                                   | (B)<br>(D)                   | Logarithmic transformation<br>Vector calculation             |
| 78. | When amplitu  | two sine waves of amplitu<br>ade of the spectral componen             | ide A <sub>1</sub><br>its is | and A2 are multiplied, the                                   |
|     |               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                  |                              | $A_1 A_2/4 A_1 A_2$                                          |
| 79. | Laplac        | e transform of teat is                                                |                              |                                                              |
|     |               | $\frac{1}{(s-a)^2}$                                                   |                              | $\frac{s}{(s-a)^2}$                                          |
|     | (C)           | $\frac{s}{(s-a)}$                                                     | (D)                          | $\frac{s}{(s+a)^2}$                                          |

60615

| - m |         | ~ |                                        | -    |   |     |
|-----|---------|---|----------------------------------------|------|---|-----|
| XII | Inverse | / | transform                              | ort. | 3 | 10  |
|     |         | - | 11 11 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.2  |   | 1.3 |

| 0                  | -   | and the same of th |    |
|--------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $i \Delta \lambda$ | 754 | 77-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1 |
| 100                | 147 | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2. |
|                    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |

 $(B) \quad \delta(n)$ 

(D) u(n)

81. The Fourier Transform of 
$$x(n) = a^n u(n-4)$$
 is

(A) 
$$\frac{a^4 e^{-j4\omega}}{1 - ae^{-j\omega}}$$

 $\frac{a^4}{1 - ae^{-j\alpha}}$ 

(C) 
$$\frac{a^4 e^{-j4\phi}}{2}$$

(D)  $\frac{a^4 e^4}{e^{/a^4}}$ 

| 82. | Energy | associated | with | function | f(t) | = | e <sup>-t</sup> | u(t) | is |
|-----|--------|------------|------|----------|------|---|-----------------|------|----|
|-----|--------|------------|------|----------|------|---|-----------------|------|----|

(A) 0

(B) 1/3

(C) 12

(D) 1.4

### 83. Intrinsic impedance of a free space is

(A) 350 Ω

(B) 377 Ω

(C) infinite

(D) zero

(A) perfect dielectric

(B) semi-conductor

(C) conductor

(D) All of the above

(A) 1

(B) 2

(C) x

(D) None of the above

# 86. The following waves do not exist in waveguides

(A) TM waves

(B) TE waves

(C) TEM waves

(D) TE and TM waves

|     | *                                                                                                                                                                                        |            |                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------|
| 87. | In a transmission line, the distance<br>minima of a standing wave is                                                                                                                     | e bet      | ween adjacent maxima and                    |
|     | (A) λ/8<br>(C) λ/2                                                                                                                                                                       | (B)<br>(D) |                                             |
| 88. | A transmission line of characteristic<br>The input impedance is                                                                                                                          | impe       | dance $Z_0$ is terminated in $Z_0$ .        |
|     | (A) $Z_0/2$ (C) $2 Z_0$                                                                                                                                                                  | (B)<br>(D) | Z <sub>0</sub><br>4 Z <sub>0</sub>          |
| 89. | In a broadcast superheterodyne rece                                                                                                                                                      | iver, t    | he                                          |
|     | <ul> <li>(A) local oscillator operates bel</li> <li>(B) mixer input must be turned</li> <li>(C) local oscillator frequency is</li> <li>(D) RF amplifier normally we frequency</li> </ul> | to the     | signal frequency                            |
| 90. | Entropy is basically a measure of                                                                                                                                                        |            |                                             |
|     | <ul><li>(A) rate of information</li><li>(C) probability of information</li></ul>                                                                                                         | (B)<br>(D) | average information disorder of information |
| 91. | Thermal noise power in a resistor F                                                                                                                                                      | R is pr    | oportional to                               |
|     | (A) R<br>(C) R <sup>2</sup>                                                                                                                                                              | (B)<br>(D) | 1/R<br>Independent of R                     |
| 92. | The skip distance is                                                                                                                                                                     |            |                                             |
|     | <ul> <li>(A) independent of frequency</li> <li>(B) independent of the state o</li> <li>(C) independent of transmitting</li> <li>(D) dependent on transmitting</li> </ul>                 | f ioniz    | ver                                         |



| 93. | Spectral       | density of white noise        |           |                    |
|-----|----------------|-------------------------------|-----------|--------------------|
|     | (A)            | varies with frequency         | (B)       | is constant        |
|     |                | varies with bandwidth         |           | None of the above  |
| 94. | Quadrat        | ture multiplexing is a form   | of        |                    |
|     | (A)            | time division multiplexing    | g         |                    |
|     | (B)            | frequency division multip     | lexing    |                    |
|     | (C)            | combined time and freque      | ency divi | ision multiplexing |
|     | (D)            | None of the above             |           |                    |
| 95. | In TV,         | the contrast is controlled by | Ÿ         |                    |
|     | (A)            | DC voltage in video circu     | ait       |                    |
|     | (B)            | AC voltage in video circu     | iit       |                    |
|     | (C)            | Both (A) and (B)              |           |                    |
|     | (D)            | None of the above             |           |                    |
| 96. | ARQ s          | tands for                     |           |                    |
|     | $(\mathbf{A})$ | Accelerated redirection for   | acility   |                    |
|     | (B)            | Amplitude ratio detector      | quantizii | ng noise           |
|     |                | Automatic repeat request      |           |                    |
|     | (D)            | Aerial range quartz crysta    | al        |                    |
| 9   | ln a kl        | ystron amplifier the input of | avity is  | called             |
|     | (A)            | Buncher                       |           | Catcher            |
|     | (C)            | Pierce gun                    | (D)       | Collector          |
| 98  | Micro          | wave resonators are used in   | 1         |                    |
|     | (A)            | microwave oscillators         |           |                    |

(B) microwave narrow band amplifier
(C) microwave frequency metres
(D) All of the above

| 99.  | In a TW                  | T the amplitude of resulta                                                 | nt wave               | travelling down the helix                                       |
|------|--------------------------|----------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------|
|      | (A)<br>(C)               | increases exponentially decreases exponentially                            |                       | increases linearly is almost constant                           |
| 100. | Which o                  | of the following is not a tra                                              | avelling v            | wave?                                                           |
|      | (A)<br>(C)               | $e = E_m \sin (\beta x - \omega t)$<br>$e = E_m \sin (\omega t - \beta x)$ | (B)<br>(D)            | $e = E_m \cos (\beta x - \omega t)$<br>$e = E_m \sin (\beta x)$ |
| 101. | Which                    | of the following parameter                                                 | s is negli            | igible in transmission lines?                                   |
|      | (A)<br>(C)               |                                                                            | (B)<br>(D)            | L<br>G                                                          |
| 102. |                          | agram to show distance ter is called                                       | time hist             | ory of electrons in klystron                                    |
|      | (A)<br>(C)               | apple gate diagram<br>bunching diagram                                     | (B)<br>(D)            |                                                                 |
| 103. | Which                    | of the following devices u                                                 | ses a slov            | w wave structure?                                               |
|      | (A)<br>(B)<br>(C)<br>(D) | Reflex klystron oscillato                                                  | plifier               |                                                                 |
| 104. | A wav                    | eguide section in a microw                                                 | ave circu             | iit acts as                                                     |
|      | (A)<br>(C)               | LP filter<br>HP filter                                                     | (B)<br>(D)            | Band pass filter<br>Band stop filter                            |
| 105. | freque                   | a MOD-14 ripple count<br>ency to the counter is 30 ker will be             | er using<br>KHz, then | J-K flip-flops. If the clock in the output frequency of the     |
|      | (A)<br>(C)               |                                                                            | (B)<br>(D)            |                                                                 |



| 106. | Schottky                 | TTL gates have prop                                 | agation delay         | y time of the order of                       |
|------|--------------------------|-----------------------------------------------------|-----------------------|----------------------------------------------|
|      | (A)<br>(C)               |                                                     | (B)<br>(D)            |                                              |
| 107. | A one-to                 | o-sixteen demultiplexe                              | er requires           |                                              |
|      | (A)<br>(C)               | 2 select input lines<br>8 select input lines        | (B)<br>(D)            | 3 select input lines<br>4 select input lines |
| 108. |                          | imber of states in its<br>ing of 'n' flip-flops can |                       | equence that a ring counter                  |
|      |                          | 2 <sup>n</sup> -1 n                                 | (B)<br>(D)            | 2 <sup>n-1</sup> 2n+1                        |
| 109. | In app<br>the OP         | lications where measure<br>AMP circuit recomme      | rement of a punded is | physical quantity is involved,               |
| *    | (A)<br>(B)<br>(C)<br>(D) | a comparator<br>an active filter                    |                       |                                              |
| 110. | For a                    | 3-bit flash ADC, the m                              | mber of com           | parators required are                        |
|      |                          | ) 5<br>) 7                                          | (B)<br>(D)            |                                              |
| 111. | The u                    | nity gain bandwidth of                              | 741 OPAMI             | e is typically                               |
|      | (C                       | 17                                                  | (B)                   | 1 MHz                                        |
| 112  | The                      | conversion time of a du                             | al-slope AD           | is typically in the range of                 |
|      | (A                       | 5 to 10 ns                                          | (B)                   | 10 to 100 ns                                 |
|      |                          |                                                     |                       |                                              |

| 113. | . The ratio of change in input offset voltage when var | iation in | supply |
|------|--------------------------------------------------------|-----------|--------|
|      | voltage is made, is called                             |           |        |

(A) PSRR

CMRR (B)

(C) transient response

input offset voltage stability (D)

- Removing bypass capacitor across the emitter-leg resistor in a CE 114. amplifier causes
  - increase in current gain (A)

decrease in current gain

increase in voltage gain

(D) decrease in voltage gain

- Hysteresis is desirable in Schmitt-trigger, because 115.
  - energy is to be stored/discharged in parasitic capacitances (A)

effects of temperature would be compensated

- devices in the circuit should be allowed time for saturation (C) and desaturation
- it would prevent noise from causing false triggering
- The important characteristic of emitter-follower is 116.
  - high input impedance and high output impedance (A)
  - high input impedance and low output impedance (B)
  - low input impedance and low output impedance (C)
  - low input impedance and high output impedance (D)
- In class-A amplifier, the output current flows for 117.
  - a part of the cycle or the input signal (A)
  - the full cycle of the input signal (B)
  - half the cycle of the input signal (C)
  - 3/4th of the cycle of the input signal



| 118. | A phase shift oscillator uses                                                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | <ul> <li>(A) LC tuning</li> <li>(B) Piezo-electric crystal</li> <li>(C) Balanced bridge</li> <li>(D) Variable frequency operation</li> </ul>                                                                                                           |
| 119. | Ready pin of a microprocessor is used                                                                                                                                                                                                                  |
|      | <ul> <li>(A) to indicate that the microprocessor is ready to receive inputs</li> <li>(B) to indicate that the microprocessor is ready to receive outputs</li> <li>(C) to introduce wait states</li> <li>(D) to provide direct memory access</li> </ul> |
| 120. | Itanium processor of Intel is a                                                                                                                                                                                                                        |
|      | <ul> <li>(A) 32 bit microprocessor</li> <li>(B) 64 bit microprocessor</li> <li>(C) 128 bit microprocessor</li> <li>(D) 256 bit microprocessor</li> </ul>                                                                                               |
| 121. | The PCI bus is the important bus found in all the new Pentium systems because                                                                                                                                                                          |
|      | (A) it has plug and play characteristics                                                                                                                                                                                                               |
|      | <ul> <li>(B) it has ability to function with a 64 bit data bus</li> <li>(C) any Microprocessor can be interfaced to it with PCI controller or bridge</li> <li>(D) All of the above</li> </ul>                                                          |
| 122. | In a virtual memory system, the addresses used by the programmer belongs to                                                                                                                                                                            |
|      | (A) memory space (C) address space (B) physical addresses (D) main memory address                                                                                                                                                                      |
| 123. | DMA interface unit eliminates the need to use CPU registers to transfer data from                                                                                                                                                                      |
|      | (A) MAR to MBR (C) I/O units to memory (B) MBR to MAR (D) Memory to I/O units                                                                                                                                                                          |

- 124. Which is true for a typical RISC architecture?
  - (A) Micro programmed control unit
  - (B) Instruction takes multiple clock cycles
  - (C) Have few registers in CPU
  - (D) Emphasis on optimizing instruction pipelines
- 125. CPU checks for an interrupt signal during
  - (A) Starting of last machine cycle
  - (B) Last T-State of instruction cycle
  - (C) First T-State of interrupt cycle
  - (D) Fetch cycle
- 126. Silicon diodes are preferred to Germanium for high temperature operation because
  - (A) doping of silicon is simple process
  - (B) rate of increase of reverse saturation current with temperature is more in case of silicon
  - (C) the reverse saturation current of silicon diodes is smaller than that of germanium
  - (D) silicon diodes can be used to rectify even small voltages
- 127. In an unbiased PN junction the current in equilibrium is
  - (A) zero because no charge cross the junction
  - (B) zero because equal number of charges cross the junction
  - (C) due to diffusion of minority carriers
  - (D) due to diffusion of majority carriers
- 128. In a regulated power supply using a Zener diode the unregulated input voltage as compared to the regulated output voltage must be
  - (A) same

(B) smaller

(C) larger

(D) larger with opposite polarity



#### 129. The diffusion capacitance of PN junction

- (A) decreases with increasing current and increasing temperature
- (B) decreases with decreasing current and increasing temperature
- (C) increases with increasing current and increasing temperature
- (D) does not depend on current and temperature

## 130. In an intrinsic semiconductor, the Fermi-level is

- (A) closer to the valence band
- (B) midway between conduction and valence band
- (C) closer to the conduction band
- (D) within the valence band

## 131. In an amplifier with negative feedback

- (A) only the gain of the amplifier is affected
- (B) only the gain and bandwidth of the amplifier are affected
- (C) only the input and output impedances are affected
- (D) All of the four parameters mentioned above would be affected
- 132. In the voltage regulator shown below, if the current through the load decreases,



- (A) the current through R1 will increase.
- (B) the current through R1 will decrease.
- (C) zener diode current will increase.
- (D) zener diode current will decrease

| 133. | The low         | est output impedance is obta                                                        | ined i     | in case of BJT amplifiers for                                       |
|------|-----------------|-------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------|
|      |                 | CB configuration CC configuration                                                   | (B)<br>(D) | II DT Ction                                                         |
| 134. | is 100 a        | nplifier with negative feedband it employs a feedback fadetermine voltage gain with | actor o    | ne gain of the basic amplifier of 0.02. If the input signal is ack. |
|      | (A)             | 33.33                                                                               | (D)        | 3.33                                                                |
|      | (C)             |                                                                                     | (B)        | 1.33                                                                |
|      | (0)             | 333.3                                                                               | (D)        | 1.55                                                                |
| 135. | A BJT<br>Determ |                                                                                     | µA ar      | nd emitter current of 15mA.                                         |
|      | (A)             | 590                                                                                 | (B)        | 5.9                                                                 |
|      | 2. 2            | 59                                                                                  | (D)        |                                                                     |
|      | (0)             |                                                                                     | (12.)      | 13                                                                  |
| 136. | In gene         | eral, the reactance of inductors                                                    | s incre    | eases with                                                          |
|      | (A)             | increasing AC frequency                                                             | (B)        | decreasing AC for                                                   |
|      | (C)             |                                                                                     | (D)        | g = - quency                                                        |
|      |                 |                                                                                     |            |                                                                     |
| 137. | The co          | olor of light emitted from the I                                                    | ED li      | ke GaAs depends on                                                  |
|      | (A)             | forward bias alone                                                                  |            |                                                                     |
|      | (B)             |                                                                                     |            |                                                                     |
|      |                 | λ of light focused on the did                                                       | ode        |                                                                     |
|      |                 | reverse breakdown voltage                                                           |            |                                                                     |
| 138. | The m           | inimum amount of hardware r                                                         | equire     | ed to make a lowpass filter is                                      |
|      | (A)             | a resistance, a capacitance a                                                       | nd an      | Opamn                                                               |
|      | (B)             |                                                                                     |            |                                                                     |
|      | (C)             | a resistance and a capacitan                                                        | ce         | •                                                                   |
|      | (D)             | a resistance, a capacitance a                                                       | nd an      | inductance                                                          |
|      | *               |                                                                                     |            |                                                                     |



| 139. | identical                |                                                                                                     | _          | two magnetically coupled, sonance frequency of either                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|--------------------------|-----------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |                          | a peak always<br>either a peak or a dip                                                             | (B)<br>(D) | a dip always<br>neither a peak nor a dip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 140. |                          | r, resonance condition exists                                                                       |            | least one inductor and one when the input impedance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | (A)<br>(C)               | purely resistive finite                                                                             | (B)<br>(D) | purely reactive infinite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 141. |                          | sistances $R_1$ and $R_2$ give comes and 1 ohm when in parallel.                                    |            | resistance of 4.5 ohms when resistances are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | (A)<br>(C)               | 3 ohms and 6 ohms<br>1.5 ohms and 3 ohms                                                            | (B)<br>(D) | 3 ohms and 9 ohms<br>1.5 ohms and 0.5 ohms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 142. | Solar ce                 | ells                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (A)<br>(B)<br>(C)<br>(D) | give high output current of<br>are same as photovoltaic ce<br>both (A) and (B)<br>None of the above | lls        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 143. | The rev                  | verse recovery time of a Scho                                                                       | ttky d     | iode is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | (A)<br>(C)               | 50ms<br>50 ns                                                                                       | (B)<br>(D) | 50 μs<br>50 ps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 144. | The op                   | erating state that distinguished                                                                    | es a SC    | CR from a diode is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | (A)<br>(C)               | forward conduction state<br>reverse conduction state                                                | (B)<br>(D) | The state of the s |

| A network N is to be connected to load of 500 ohms. If the equivalent voltage and Norton's equivalent current of N are 10mA respectively, the current through the load will be | e 5Volts and |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 10mA respectively, the current through the load will be                                                                                                                        |              |

(A) 10mA

(B) 5mA

(C) 2.5mA

(D) 1mA

146. A stable system must have

(A) zero or negative real part for poles and zeros.

(B) atleast one pole or zero lying in the right-half s-plane.

(C) positive real part for any pole or zero.

(D) negative real part for all poles and zeros

147. The feedback factor at the frequency of oscillation of a Wien bridge oscillator is

(A) 3

(B) 1/3

(C) 1/29

(D) 3/29

148. If the peak value of the input voltage to a half wave rectifier is 28.28 volts and no filter is used, the maximum dc voltage across the load will be

(A) 20√2V

(B) 15 V

(C) 9 V

(D) 14.14 V

149. A resistor used in colour TV has the following colour bands: yellow, violet, orange and silver. Its nominal value is

(A)  $4.7 \text{ K}\Omega \pm 10 \%$ 

(B)  $4.7 \text{ K}\Omega \pm 5 \%$ 

(C)  $47 \text{ K}\Omega \pm 10 \%$ 

(D)  $470 \text{ K}\Omega \pm 5 \%$ 

150. An ideal voltage source of 12 V provides a current of 150 mA to a load connected across it. If the load impedance is halved, the new load current will be

(A) 0.3 A

(B) 0.15 A

(C) 0.6 A

(D) 1.2 A