60414	,		
ROLL No.			

TEST BOOKLET No.

811

TEST FOR POST GRADUATE PROGRAMMES

CHEMISTRY

Time: 2 Hours

Maximum Marks: 450

INSTRUCTIONS TO CANDIDATES

- You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Answer Sheet. Read carefully all the instructions given on the Answer Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- 3. Also write your Roll Number, Test Code, and Test Subject in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with a Ball Point Pen.
- 4. The paper consists of 150 objective type questions. All questions carry equal marks.
- 5. Each question has four alternative responses marked A, B, C and D and you have to darken the bubble fully by a Ball Point Pen corresponding to the correct response as indicated in the example shown on the Answer Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- 7. Space for rough work is provided at the end of this Test Booklet.
- 8. You should return the Answer Sheet to the Invigilator before you leave the examination hall. However, you can retain the Test Booklet.
- 9. Every precaution has been taken to avoid errors in the Test Booklet. In the event of any such unforeseen happenings, the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be taken at the time of evaluation, if necessary.

CHEMISTRY

- 1. Which of the following compounds has the highest boiling point?
 - (A) CH₃I

(B) CH₃OH

(C) CH₃NO₂

(D) CH₃NH₂

2. The Newman projection which shows the most stable conformation of the compound, BrClHC-CH₂Br is

$$(A) \quad \begin{array}{c} H \\ BI \\ H \end{array}$$

(B) H H H

 $(D) \qquad \begin{array}{c} H \\ CI \\ \end{array} \begin{array}{c} Br \\ Br \end{array}$

- 3. The number of dichlorinated isomers formed by the halogenation of CH₃CH₂CH₂CH₃ with Cl₂ in the presence of light is
 - (A) 2

(B)

(C) 5

(D) 6

4. Which of the following is an intermediate in the reaction of benzene with CH₃Cl and AlCl₃?

(B) H-C:

(D) H H

5. Which of the following are the best reactants in the following synthesis?

- (A) CH₃CH₂Cl + AlCl₃
- (B) CH₃COOH + AlCl₃
- (C) CH₃COCl + AlCl₃
- (D) CH₃CHO + AlCl₃
- What is the major product in the following reaction? 6.

$$\sim$$
 SNa + CH₃-Br $\stackrel{\text{Et}_2O}{\longrightarrow}$

- (C)
- (D)
- Which of the following halides will react most rapidly in a $S_{N}2$ 7. reaction?
 - (A) CH₃F

(B) CH₃Cl

(C) CH₃Br

(D) CH₃I

8. The product/s obtained from the following reaction is/are

100%

9. The major product of the following reaction is

$$H_3C$$
 CH_3
 Et_2O

(A)
$$CH_3-CH-CH_2-CH_3$$
 CH_3

(B)
$$H_2C = CH - CH_2 - CH_3$$

(C)
$$H_3C$$
 CH_3 $C=C$ H

(D)
$$H_3C$$
 H CH_3

10. The number of moles of oxygen required for the complete combustion of C₃H₈ is

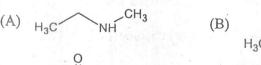
(A) 3

(B) 3.5

(C) 1.5

(D) 5

11. The major product of the following reaction



- 12. When isopropanol and t-butanol are treated with acidified KMnO₄,
 - (A) KMnO₄ gets decolourised due to the oxidation of both the reactants
 - (B) KMnO₄ gets decolourised due to the oxidation of isopropanol only
 - (C) KMnO₄ gets decolourised due to the oxidation of t-butanol only
 - (D) KMnO₄ does not get decolourised
- 13. Choose the true statement from among the following, with respect to cyclohexanol and phenol.
 - (A) Cyclohexanol is a better proton donor due to the inductive effect
 - (B) Phenol is a better proton donor due to the inductive effect
 - (C) Cyclohexanol is a better proton donor due to the resonance stabilisation of the anion formed.
 - (D) Phenol is a better proton donor due to the resonance stabilisation of the anion formed

The product in the above reaction is

$$H_3C \xrightarrow{CH_3MgI} H_3O^+$$
 is

C)
$$H_3C$$
 CH_3 (D) H_3C OH

16. Which of the functional groups on the following molecule are susceptible to nucleophilic attack?

- (A) 'a', 'b' and 'c'
- (B) 'a'and 'c'

CH₃

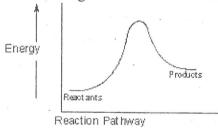
- (C) 'b' and 'c'
- (D) 'a', and 'b'

17. In allene (C₃H₄), the types of hybridisation of the terminal and the central carbon atoms are, respectively,

- (A) sp^3 and sp^2
- (B) sp^2 and sp^2
- (C) sp² and sp
- (D) sp and sp

18. The number of chiral carbon atoms present in 2, 3, 4 - trichloropentane is

(A) 3


(B) 2

(C) 1

(D) 4

- Which one of the following statements is not true regarding lactose? 19.
 - (A) It contains 8-OH groups
 - (B) It is a β-glycoside
 - (C) Its hydrolysis products are glucose and galactose
 - (D) It is reducing sugar
- Which among the following molecules will give acetone on zonolysis? 20.

The following reaction coordinate diagram represents 21.

- (A) an endothermic reaction
- (B) an exothermic reaction
- (C) a catalytic reaction
- (D) a reaction with no energy change

22. CH: H H--OH HO--H C2H5

The molecules represented by the above two structures are

Br

(A) identical

 C_2H_5

- (B) enantiomers
- (C) diastereomers
- (D) epimers

23. Pyridine undergoes electrophilic substitution reaction preferentially

- (A) at position 2
- (B) at position 3
- at position 4
- (D) at positions 2 and 4

S_N1 reaction on optically active substrate mainly gives 24.

- (A) retention in configuration (B) inversion in configuration
- racemic product
- (D) no product

25. Osmium tetroxide is a reagent used for


- (A) hydroxylation of acetylenes
- (B) hydroxylation of olefins to give cis diols
- hydroxylation of olefins to give trans diols
- (D) hydroxylation of carbonyl compounds

In Reimer-Tiemann reaction the possible electrophile is 26.

- (A) dichloro carbene
- ⊕ СНО

⊕CHCl₂

(D) None of the above

H ₃ C	C==	C==	<u></u> c	==c+
------------------	-----	-----	-----------	------

(A) 8

(B) 11

(C) 10

(D) 14

28. Best reagent to convert isopropyl alcohol to isopropyl bromide is

(A) HBr

(B) SOBr₂

(C) Br₂

(D) CH₃MgBr

29. Number of isomeric hexane (C₆H₁₂) existing

(A) 2

(B)

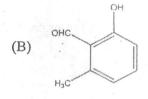
(C) 4

(D) 5

30. What is the major product of the following reaction sequence?

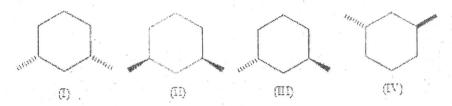
- (A) (A)
- (B)
- (C) CO₂H
- (D)

31. Pick out the strongest nucleophile

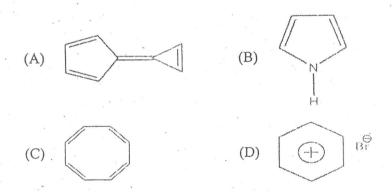

(A) OH

(B) [⊖]OCH₃

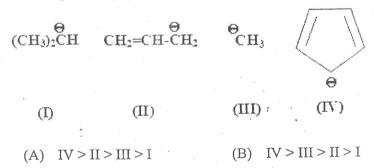
(C) Θ


(D) Ph-O

32. Pick out the major product


- 33. A water soluble C₆H₁₄O₂ compound is oxidized by lead tetra acetate to a single carbonyl (C₃H₆O) compound. Which of the following would satisfy this fact?
 - (A) meso-2,3-dimethoxybutane
 - (B) 1,2-dimethoxyethane
 - (C) meso-2,5-hexanediol
 - (D) meso-3,4-hexanediol

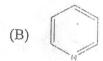
34. Which two of the following compounds represent a pair of enantiomers?

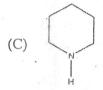


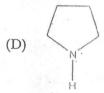
(A) I and II

- (B) II and III
- (C) III and IV
- (D) II and IV
- 35. Pick out the non aromatic compound

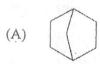
36. Arrange the following carbanions in the following series in order of increasing stability.




- (C) IV > II > I > II
- (D) II > IV > III > I



37. Choose the most basic compound from the following

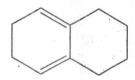


38. Pick out the structure of a diazonium ion

39. Which of the following molecule is a bicycle [2.2.0] hexane?

- 40. Primary amines are neutral because
 - (A) protons attached to NH2 not liable
 - (B) react with base and undergo hydrolysis
 - (C) lone pair on NH₂ unavailable for protonation
 - (D) carbonyl group undergoes protonation
- 41. Systematic name for

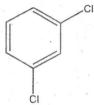
- (A) cis 1,4-dibromocyclopentane
- (B) trans 1,4-dibromocyclopentane
- (C) cis 1,3-dibromocyclopentane
- (D) trans 1,3-dibromocyclopentane
- 42. Cyanide ion is the best catalyst for benzoin condensation because it is
 - (A) a good nucleophile
 - (B) a good leaving group
 - (C) a good nucleophile and leaving group
 - (D) soluble in water and alcohol
- 43. Which one of the following bonds shows strongest absorption in the IR?
 - (A) C-H


(B) O-H

(C) N-H

(D) S-H

What is the λ_{max} of the following compound? 44.


Base value= 253 or 214 nm: Alkyl group= +5 nm: Exocyclic = +5 nm

(A) 234 nm

(B) 244 nm

(C) 273 nm

- (D) 283 nm
- Number of ¹H NMR signals observed in the following compound is 45.

(A) 1

(B)

(C) 3

- (D) 4
- Predict the number of ¹³C NMR signals in the following compound. 46.

(A) 7

(B) 8

(C) 6

(D) 10 -

Which one of the following compounds is most likely to have its base peak at m/z=43?

(A)
$$H_3C - C - CH_3$$
 (B) $H_3C - C - CH_3$

- (C) $H_{-}C = CH_{3}$ (D) $C_{8}H_{5} = -CH_{3}$
- 48. An organic compound of molecular formula C₈H₈O gave two strong peaks at m/z=77 and 43 in mass spectrum. The structure of the compound is

- 49. Number of C₆H₃ClBrNO₂ isomers formed by the bromination of metachloronitrobenzene is
 - (A) 1


(B) 2

(C) 3

(D) 4

Which is the best reagent for the following conversation? 50.

- H_2O_2/H (A)
- (B) CH3CO3H
- (C) CF3CO3H
- (D) PhCO₃H
- Example of a symmetric rotor 51.
 - (A) NH_3

(B) SF₆

(C) CO₂

- (D) H₂O
- 52. The unit of partition function is
 - (A) s^{-1}

(B) dimensionless

(C) lit mol⁻¹

- (D) JK⁻¹
- 53. Pick out the Boson
 - (A) Electron

(B) Proton

(C) Photon

- (D) Neutron
- Essential symmetries of a triclinic system is 54.
 - (A) None

- One C2 axis
- (C) One C₆ axis
- (D) One C₃ axis

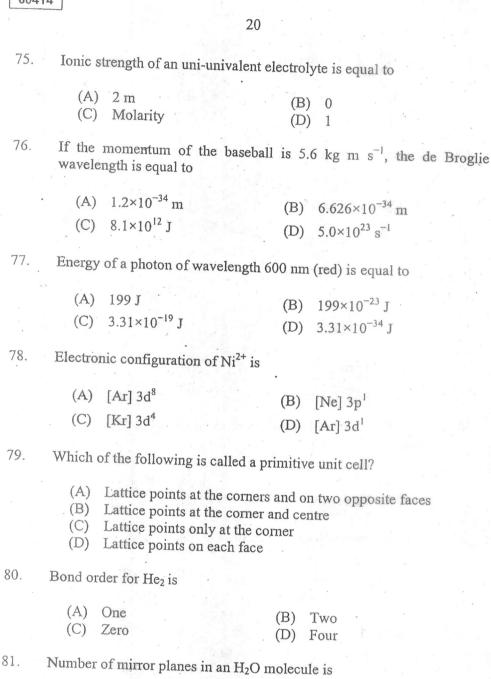
55.	The joi	ule (J) is defined as		
		1 J = 1 kg m ² s ⁻² 1 J = 1 kg m ² s ⁻¹		1) $1 J = 1 \text{ kg m}^2$ 1) $1 J = \text{mol lit}^{-1} \text{s}^{-1}$
56.	Numbe	er of modes of vibra	tion for a CO	molecule is
	(A) (C)		(B (D) 4) 12
57.	Numbe	r of components in	aqueous aceti	c acid system is
	(A) (C)	1 3	(B (D) 2
58.	Ionic st	rength of 1.00 m m	ol kg ⁻¹ CaCl ₂	(aq) at 25°C is
		3 m mol kg ⁻¹ 2 m mol kg ⁻¹		6 m mol kg ⁻¹) 1 m mol kg ⁻¹
59.	The ten	m 'nanotechnology'	was first use	d by
	(A) (C)	Richard Kelvin	(B) (D)	Boltzmann
60.	Level of	f the atmosphere oc	curring at the	highest altitude is
•	(A) (C)	Mesosphere Statosphere	(B)	
61.	The cell	parameters of a tric	clinic system	are
*, *		$a \neq b \neq c$; $\alpha \neq \beta \neq \gamma$ $a \neq b \neq c$; $\alpha \neq \beta = \gamma$	` '	$a \neq b = c; \alpha = \beta = \gamma$ $a \neq b = c; \alpha = \beta \neq \gamma$

62.

The standard deviation is

	(A) (B) (C) (D)	the square root of the variance a measure of the variability an approximate indicator of how numbers vary from the mean All of the above
63.	Choose	the n-type semiconductor
	(A) (B) (C) (D)	Germanium doped with silicon
64.	Which	of the following atom has the high ability to scatter X-rays?
	(A) (C)	
65.	Number	r of significant figures in 0.0405 is
	(A) (C)	4 (B) 3 (D) 1
66.	An equi	lateral triangle belongs to the point group
	(A)	C_{2V} (B) D_{3h} (C) T_d
67.	Which rotation	one of the following molecules will show a microwave al spectrum?
		HCl (B) H ₂ CH ₄ (D) SF ₆
•		
	a	

68.	Example of a nonlinear operator		
	(A) d/dx (C) d^2/dx^2	(B) (D)	$\sqrt{x^2}$
69.	Symmetry number of NH ₃ molecule	is	
*	(A) 2 (C) 12	(B) (D)	3


70.	IR inactive molecule							
	(2)		*	*				
	,	(A)	N_2		7 9		(B)	CO_2
		(C)	CoHo				(D)	OCS

- 71. $1H_Z$ is equal to

 (A) 1 cm^{-1} (B) 1 s(C) 1 m^{-1} (D) 1 s^{-1}
- 72. First line in the rotational spectrum of Co is 3.842 cm⁻¹. The rotational constant is equal to
 - (A) 1.921 m^{-1} (B) 19.21 cm^{-1} (C) 1.281 cm^{-1} (D) 1.921 cm^{-1}
- 73. Specific selection rule of microwave spectroscopy
 - (A) $\Delta J = \pm 1$ (B) $\Delta J = 0$ (C) $\Delta J = \pm 1, \pm 2, \pm 3 \dots$ (D) $\Delta J = -1$
- 74. 1 Debye, D is equal to
 - (A) 3.3564×10^{-30} cm (B) 6.623×10^{23} cm s⁻¹
 - (C) 8.314 J (D) 273 K

(A) 2

(C) 0

(B) 1

(D) 4

			21		
82	. Which o	of the following mole	cules belongs	to the point group	D _{6h} ?
	(A)	C_6H_6	(B)	H ₂ O	
	(C)	XeF ₄	(D)	SO ₃	
83	Number groups,	of ways of arrang containing three obje	ing four disti	nguishable objects bject is	s into two
	(A) (C)		(B) (D)	2 9	
84	Dipole	moment of CCl ₄ is	. " "		
	(A) (C)	1.85 D 0.0 D	(B) (D)	1.08 D 0.42 D	
8.	5. Root m	ean square speed of t	the molecule is	n a gas at a temper	ature T is
	(A)	(3RT) 1/2	(B)	(RTM) 1/2	
		$(3RT/M)^{1/2}$	(D)	√1/2RT	
8	6. Arrang water a	e the following ions t 298 K: H ⁺ , Na ⁺ , K ⁺	in order of i , Zn ²⁺ (μ is the	ncreasing ionic me ionic mobility)	obilities in
	(A)	$\mu_{Na} + < \mu_{Zn} + < \mu_{K}$	_ζ +< μ _H +		
	(B)	$\mu_{H}+<\mu_{Zn}2+<\mu_{K}$	$+<\mu_{Na}+$		
	(C)	$\mu_{Na} + < \mu_{K} + < \mu_{H} +$	$<\mu_{Zn}2+$		
	(D)	$\mu_{Na}+<\mu_{Zn}2+<\mu_{F}$	$_{l}+<\mu_{K}+$		
8	7i	s used as a catalyst in	n hydrogenatio	on of oil.	
	(A)	Al_2O_3	(B)	MgO .	
	(C)	EDTA	(D)	Ni	

00	OIL				
88.	Charge	on	a	proton	is

- (A) $1.6022 \times 10^{-19} c$
- (B) 16.023×10^{-23} c

(C) 3×10^{-8} c

(D) 6.034×10^{-34} c

89. Boltzmann constant is

- (A) gas constant per molecule
- (B) gas constant
- (C) gas constant × Avogadro's number
- (D) Avogadro's number

90. Reduced mass, μ is equal to

(A) $m_1 - m_2$

- (B) m₁m₂
- (C) $m_1 m_2 / m_1 + m_2$
- (D) m_2/m_1

91. Natural rubber is a

- (A) hydrocarbon
- (B) polymer of isoprene
- (C) crosslinked polyethylene
- (D) poly (methyl methacrylate)

92. Zero-point energy of a harmonic oscillator is equal to

- (A) zero
- (B) $\frac{1}{2}hv$
- (C) hv
- (D) one

(where ν is the frequency of oscillation)

- 93. The determinant of the matrix $M = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ is equal to
 - (A) -2

(B) 2

(C) 10

(D) 0

Which of the following molecules may be polar?

60414

ClF₃, O₃, H₂O₂, CO₂

94.

٠.		(A)	all the four	(B)	none of the above
1 2		(C)	CO_2	(D)	ClF_3 , O_3 and H_2O_2 only
	95.	How do	pes the total pressure vary due $0 + H_2(g) \rightarrow I_2(g) + 2 HCl(g)$	ring th	ne gas-phase reaction onstant volume container?
		(B)	No change in pressure Pressure increases Pressure decreases Pressure increases first and	then d	lecreases gradually
	96.	Which	one of the following statemen	nts is f	Talse?
	97.	(A) (B) (C) (D) At cons	neighbours of opposite char The electrical conductivity increasing temperature Very fast reactions can be s Half-life of a first order concentration	ge of a r tudied react	tion depends on its initial
		, ,	$\Delta G = O$	` '	$\Delta G = \Delta H$
	98.		on has an equilibrium consta 50% product is formed at ea the reaction is highly unfav negligible	nt of 1 uilibr	0^{-4} ; it means that
		(D)		ormed	cannot be related to the

equilibrium constant

99. The experimental density of sodium chloride crystal 2.165×10^3 kg m⁻³ while its X-ray density is 2.178×10^3 kg m⁻³. The fraction of the unoccupied sites in sodium chloride crystal is

(A) 5.97

(B) 5.97×10^{-1}

(C) 5.97×10^{-2}

(D) 5.97×10^{-3}

Speed of a projectile of mass 1.0 g is known to within 1 µm s⁻¹. The minimum uncertainty in position is equal to

(A) 5×10^{-26} m

(B) 510 m

(C) 10×10^{-26} m

(D) 2.5×10^{-26} m

The first four ionization energies of an element are 284, 410, 656 and 3210 kJ/mol respectively. The number of valence electrons present in the element is

(A) 1

(B) 2

(C) 3

(D) 4

102. The correct order of the second ionization energies of C, N, O and F is

(A) C>N>O>F

(B) F > N > O > C

(C) O>F>N>C

(D) O > N > F > C

103. The boiling point of H_2O is 100°C while that of H_2Se is -42°C. This can be explained on the basis of

(A) ionic bonding

(B) covalent bonding

· (C) hydrogen bonding

(D) van der Waals forces

104. The radii of hydrated ions increases in the order

(A) $Rb^+ > K^+ > Na^+ > Li^+$ (B) $Li^+ > Na^+ > K^+ > Rb^+$

(C) $Na^{+} > K^{+} > Rb^{+} > Li^{+}$ (D) $Rb^{+} > Na^{+} > K^{+} > Li^{+}$

60414

	25	
105.	Which one of the following properties is not the characteristic of alkali metals?	
	 (A) Low I E (B) Low electro negativity (C) Outermost ns¹ electronic configuration (D) Low atomic volume 	
106.	According to the VSEPR theory, the structures of PF5 and BrF5 are respectively	
	(A) TBP and SP (B) SP and TDP	

107. The number of lone pairs present in the molecules, BF₃, PF₃, ClF₃ respectively are

(A) 0, 1 and 3 (C) 0, 0 and 1 (B) 0, 1 and 2 (D) 0, 2 and 2

108. The hybridisations and the geometries of XeF₄ and SF₄ are respectively,

(A) sp³d², octahedral and sp³, tetrahedral

TBP and TBP

(B) sp³d², square planar and sp²d, square planar

(C) sp³d², square planar and sp³, tetrahedral

(D) sp³d², square planar and sp³d, seesaw

109. The common isotopes of carbon are ¹²C and ¹³C. The average mass of carbon is 12.01115 amu. What is the abundance of the ¹³C isotope?

(A) 1.115%

(B) 98.885%

(B) SP and TBP

(D) SP and SP

(C) 0.480%

(D) 2.23%

- What do the following have in common? 110. 20 Ne, $^{19}F^-$, $^{24}Mg^{2+}$
 - (A) They are isotopes of each other
 - They are isomers of each other (B)
 - (C) They are isoelectronic species
 - (D) They do not have anything in common
- Which of the following electron configurations represents the Cr atom 111. and Cr2+cation respectively?

 - (A) [Ar]4s²3d⁴; [Ar]4s²3d² (B) [Ar]4s¹3d⁵; [Ar]4s¹3d³ (C) [Ar]4s¹3d⁵; [Ar]4s⁰3d⁴ (D) [Ar]4s¹3d⁵; [Ar]4s²3d²
- The half-life of francium-212 is 19 minutes. How many minutes will it take for 1 g of this isotope to decay to 0.125 g?
 - (A) 4.75 minutes
- (B) 57 minutes
- (C) 9.5 minutes
- (D) 38 minutes
- The atom formed by the beta decay of carbon-14 is
 - (A)

14N (B)

(C)

- 14B (D)
- The isoelectronic species among the following is 114.
 - (A) N₂ and NO
- (B) N₂ and CN
- (C) O₂ and CO
- (D) O2 and NO

	1	**		
115.	The con	rect order of polarity of the	bond,	shown as dash, is
	(A)	H-F > H-OH > H-SH > H-	NH ₂	
	(B)	$H-F > H-OH > H-NH_2 > H$	I-SH	
	(C)	$\text{H-OH} > \text{H-F} > \text{H-NH}_2 >$	H-SH	
	(D)	$H-F > H-NH_2 > H-OH > H$	(-SH	
116.		mber of bonding and non-b tral atom of BrF ₅ is	onding	pairs of electrons present i
	(A)	1 and 5	(B)	5 and 1
	(C)	5 and 16	(D)	
117.	Which	among the following compo	unds w	yould have optical isomers?
	I. ci	s-[Co(en) ₂ Cl ₂] ⁺	II.	trans-[Co(en) ₂ Cl ₂] ⁺
	III. [F	$Pt(NH_3)_2Cl_2$	IV.	$[Ni(CO)_2(PPh_3)_2]$
	(A)	Both I and II	(B)	Both I and III
	(C)	All the four	(D)	I only

- Identify the untrue statement among the following. 118.
 - (A) $[CoF_6]^{3-}$: octahedral and paramagnetic
 - (B) [NiCl₄]²⁻: square planar and diamagnetic
 - (C) [Ni(CN)₄]²⁻: square planar and diamagnetic
 - (D) [CuCl₄]²⁻: square planar and paramagnetic
- The order of increasing covalency among Li₂O, LiF and Li₃N is
 - (A) $LIF < Li_2O < Li_3N$

120.	The increasing order of magneti	c moments of
	I. [Fe(CN) ₆] ⁴⁻	II. $[Fe(CN)_6]^{3-}$
	III. [CrCl ₆] ³⁻	IV. $Ni(H_2O)_6]^{2+}$
	is	
	(A) I < II < III < IA	(B) $I < II < IV < III$
	(C) $IV < III < I < II$	(D) $II < III < I < IA$
121.	For a transition metal ion having effective magnetic moment will	ng eight electrons in its d-orbitals, the
*	(A) √18 B.M	(B) √8 B.M
	(C) √9 B.M	(D) √10 B.M
122.	Which of the following gas is mo	ost abundant in air?
	(A) He	(B) Ne
	(C) Ar	(D) Kr
123.	The alloy of copper and zinc is	
	(A) Bronze	(B) Solder
	(C) Bell metal	(D) Brass
24.	Which of the following transmu alpha particle and release of a pro-	ntations entails an absorption of an ton?
	(A) $^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th}$	(B) ${}^{14}_{7}\text{N} \rightarrow {}^{17}_{8}\text{O}$
	(C) ${}^{238}_{92}\text{U} \rightarrow {}^{234}_{90}\text{Pa}$	(D) $^{27}_{13}\text{U} \rightarrow ^{30}_{15}\text{P}$

125.	25. Which of the following species has the highest bond order?					
		NO ²⁻ NO ⁺	(B) (D)	NO ⁻ NO ²⁺		
126.	According to the 18 electron rule, which of the following is not the correct formula of a stable metal carbonyl?					
	(A)	[V(CO) ₆] ⁻ [Fe(CO) ₄] ²⁻	(B) (D)	$[Mn(CO)_5]^-$ $[Co(CO)_4]$		
127.	Of the fits low s	following metal ions, whe	ich has th	e largest magnetic moment in		
	(A)	Cr^{2+}	(B)	Mn ²⁺		
	(C)	Fe ³⁺		Fe ²⁺		
128.	Ziegler land	of ethylene consists of TiCl ₃				
		an aluminum alkyl gold cluster		acetalylacetonate triphenylphosphine		
129.	Which of the following ligands forms complexes that are example linkage isomers?					
	(A)	en	(B)	NO ₂		
	(C)	PF ₃	(D)	SO ₄ ²⁻		
130.	Which of the following is the strongest oxidizing agent?					
	(A)		(B)	O ₂		
	(C) (0-	(D)	O_2^{2-}		

Ortho and para hydrogens have 131.

- (A) different masses
- different atomic numbers (B)
- nuclei spinning in different ways (C)
- electrons spinning in different directions

The smallest cation among Na⁺, Mg²⁺, Al³⁺ and K⁺ is 132.

(A) Na⁺

(B) Mg²⁺

(C) $A1^{3+}$

(D) K+

Which of the following represents a set of isoelectronic ions? 133.

- (A) Cl⁻, K⁺, Ca²⁺, S²⁻
- (B) CΓ, K⁺, Ca²⁺, Sc³⁺
- (C) Na^+ , Li^+ , Mg^{2+} , Al^{3+} (D) N^{3-} , F^- , O^{2-} , S^{2-}

Crystal field stabilization energy is 134.

- (A) -4Dq for $[FeF_6]^{3-}$
- (B) -24Dq+2P for $[Co(NH_3)_6]^{3+}$
- (C) -20Dq+3P for $[Fe(CN)_6]^{3-}$
- (D) -8Dq for $[Cr(NH_3)_6]^{3+}$

A crystal having the lattice parameters $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$ is 135.

- (A) monoclinic
- (B) hexagonal
- (C) orthorhombic
- (D) triclinic

60414

136. [NiCl₂(PPh₃)] is tetrahedral. The analogous compounds of Pd^{II} is square planar. The number of isomers for the two complexes are respectively

(A) 1 and 1

(B) 2 and 2

(C) 1 and 2

(D) 2 and 1

137. The Lewis acid character of BF₃, BCl₃ and BBr₃ follows the order

(A) $BrF_3 < BCl_3 < BF_3$

(B) $BF_3 < BBr_3 < BCl_3$

(C) $BCl_3 < BF_3 < BBr_3$

(D) $BF_3 < BCl_3 < BBr_3$

138. In the titration of acetic acid with sodium hydroxide, the pH of the solution at the equivalence point is

(A) about 5

(B) about 8

(C) about 7

(D) about 6

139. Ni²⁺ can have two unpaired electrons in

(A) octahedral geometry only

(B) square planar geometry only

(C) tetrahedral geometry only

(D) both tetrahedral and octahedral geometry

140. In molecules H₂O, NH₃ and CH₄

(A) the bond angles are same

(B) the bond distances are same

(C) the hybridizations are same

(D) the shapes are same

141.	The species ¹⁹ Ne and ¹⁴ C emit a positron and β particle respectively. The resulting species formed are					
	` ,	¹⁹ Na and ¹⁴ B ¹⁹ Na and ¹⁴ N		¹⁹ F and ¹⁴ N ¹⁹ F and ¹⁴ B		
		11	(D)	r allu D		
142.	Using the weighted-average atomic mass of Li as 6.941u determine the natural abundance of lithium-6 (The mass of lithium-6 is 6.01513u and lithium-7 is 7.01601u)					
	(A)	7.5%	(B)	92.5%		
		15%		20%		
				2070		
143.	In which of the following, the magic numbers of both protons and neutrons are present?					
	(A)	₅₀ Sn ¹²³	(B)	82Pb ²⁰⁸		
	(C)	82Pb ²⁰⁶	(D)	₅₀ Sn ¹¹⁸		
144.	Hydrog	en bomb is based on				
	(A)	nuclear fusion	(B)	nuclear fission		
	(C)	nuclear explosion	(D)	nuclear spallation		
145.	A suspension containing insoluble substances ZnS, CuS, HgS, Ag ₂ S and FeS is treated with 2N HCl. On filtering, appreciable amounts of which one of the following groups will be in the filtrate?					
	(A)	Zn and Hg	(B)	Ag and Fe		
	(C)	Cu and Hg		Zn and Fe		

146.	Which of the following complexes will form maximum number of ion in solution?						
	(A)	$K_3[Co(NO_2)_6]$	(B)	$K_4[Fe(CN)_6]$			
	(C)	$\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{6}\right]\operatorname{Cl}_{3}$	(D)	$\left[\operatorname{Co}\left(\operatorname{NH}_{3}\right)_{3}\operatorname{Cl}_{3}\right]$			
147.	Haema	atite is concentrated by					
	(A)	gravity separation	(B)	froth floatation			
	(C)	magnetic separation	(D)	distillation			
148.	Froth floatation is normally employed for concentration of						
	(A)	oxide ores	(B)	carbonate ores			
	(C)	chloride ores	(D)	sulphide ores			
149.	Colour of the solution of sodium metal in liquid ammonia is						
	(A)	red	(B)	violet			
	(C)	blue	(D)	colourless			
150.	150. The suitable indicator in the titration of sodium hydroxide and a acid is						
	(A)	Methyl orange	(B)	Eriochrome-T			
	(C)	Phenolphthalein	(D)	Methyl red			