|--|--|

ROLL No.

TEST BOOKLET No.

277

TEST FOR LATERAL ENTRY PROGRAMMES IN ENGINEERING AND TECHNOLOGY

Time: 3 Hours

Maximum Marks: 600

INSTRUCTIONS TO CANDIDATES

- You are provided with a Test Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil the Answer Sheet. Read carefully all the instructions given on the Answer Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- 3. Also write your Roll Number and Test Code in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with Ball Point Pen. Put your signature in the column provided on the Answer Sheet in the presence of the Invigilator.
- 4. This paper consists of 200 objective type questions as detailed below:-

(i) English : 20 Nos. (Serial No. 1 to 20)
(ii) Mathematics : 50 Nos. (Serial No. 21 to 70)
(iii) Engineering Mechanics : 40 Nos. (Serial No. 71 to 110)
(iv) Engineering Graphics : 40 Nos. (Serial No. 111 to 150)
(v) General Engineering : 50 Nos. (Serial No. 151 to 200)

- Each question has four alternative responses marked A, B, C and D and you have to darken the bubble fully by Ball Point Pen corresponding to the correct response as indicated in the example shown on the Answer Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- 7. Space for rough work is provided at the end of this Test Booklet.
- You should return the Answer Sheet to the Invigilator before you leave the examination hall.
 However, you can retain the Test Booklet.
- 9. Every precaution has been taken to avoid errors in the Test Booklet. In the event of any such unforeseen happenings, the same may be brought to the notice of the Observer/Chief Superintendent in writing. Suitable remedial measures will be taken at the time of evaluation, if necessary.

for edge

575

. . . .

THE PARTY OF THE PROPERTY OF THE PARTY OF TH

i 1200 de aresto.

and the same and the

-0.0 (**Pa**)

Autologia Autologia Autologia Autologia

TEST FOR LATERAL ENTRY TO B.TECH. DEGREE PROGRAMMES

ENGLISH

Direction (Qn. Nos. 1 and 2): Select the correct form of <u>Passive Voice</u> for the following.

- 1. Open the door.
 - (A) The door should be opened.
 - (B) Let the door be opened.
 - (C) The door may be opened.
 - (D) The door has to be opened.
- 2. I will teach him.
 - (A) He can be taught by me.
- (B) He should be taught by me.
- (C) He will be taught by me.
- (D) He has to be taught by me.

Direction (Qn. No. 3): Read the given passage carefully and choose the correct statement from the following.

- 3. Apart from those who are in schools, and yet learning very little, over half of all children out of school are girls. The problem with low quality education is that it compels parents, who believe education could pull them out of poverty, to send their children to private schools. They automatically equate such schools with a better quality of education. In India, the percentage of children enrolled in private schools is steadily increasing, even in the poorer states.
 - (A) Parents prefer to send their children to private schools because they think that the students of private schools have a higher social status
 - (B) Parents send their children to private schools because they believe that education could pull them out of poverty
 - (C) The low quality education offered in ordinary schools compels the parents to send their children to private schools which offer a better quality of education
 - (D) Parents send their children to private schools because those schools offer many better facilities to their students

Direction (Qn. No. 4): Pick out the correctly spelt word.

4.

- (A) heriditary
- (B) hereditery
- (C) hereditary
- (D) hareditary

Direction (Qn. No. 5): Select the most suitable opposite word for the following.

- 5. compulsory
 - (A) willing
- (B) voluntary
- (C) hesitating
- (D) deliberate

Direction (Qn. No. 6): Choose the correct form of reported speech for the following.

- 6. "Don't run so fast and fall into that ditch" said the teacher.
 - (A) The teacher asked his student not to run so fast and fell into that ditch
 - (B) The teacher advised his student not to run so fast and fall into that ditch
 - (C) The teacher wanted his student not to run so fast to fall into that ditch
 - (D) The teacher asks his student not to run so fast and fall into that ditch

Direction (Qn. Nos. 7-9): Choose the word which is <u>nearest in meaning</u> for the following.

- 7. expatriate
 - (A) person living outside one's own country
 - (B) one who expects help from others
 - (C) one who does not love his country
 - (D) one who is expelled from one's own country

3.	exigency	# 27 M
	(A) excuse (C) exhaustion	(B) excitement (D) emergency
9.	privilege	
	(A) support (C) privacy	(B) freedom(D) special favour or benefit
Direc		k out the mistaken part from the following
10.	What could be worse that	an raising the hopes of a child and her parents
	with the promise of edu	cation and all it carries with it
	only to have it dashed f	or the ground
	(A) 1 (C) 3	(B) 2 (D) 4
Dir	ection (Qn. Nos. 11 - 16):	Fill in the blanks with the correct choice.
11.	A true politician is alw	ays indifferent wealth and fame.
	(A) to (C) towards	(B) at (D) of
12.	My daughter has been	in France 2004.
	(A) before (C) since	(B) at (D) in
13	. Rome was not built	a day.
	(A) on (C) in	(B) for (D) at

14. I an LIC policy last week.	
(A) had taken (C) took (B) have taken (D) take	
15. One of her daughters her to do that work.	
(A) help (C) helps (B) do help (D) helping 16. The old lady alighted the bus slowly.	
(A) at	
(C) from (B) down	
Direction (Qn. Nos. 17 – 20): Choose the correct question tag for the	
17. My wife sings well,?	
(A) didn't she (C) won't she (B) doesn't she (D) hasn't she	
18. She has been waiting for a long time,?	
(A) has she (C) had she (B) hasn't she (D) didn't she	
19. You will work hard to pass the test,?	
(A) will you (C) can you (B) won't you (D) can't you	
20. Something is better than nothing,?	
(A) is it (C) isn't it (B) was it (D) wasn't it	

MATHEMATICS

- If $\sin^{-1} x = \frac{\pi}{4}$ for some x in (-1, 1), then $\cos^{-1} x =$ 21.

- If $\frac{\pi}{2} > x > 0$, the minimum value of $\tan x + \cot x$ is

(A) 1 (C) 3

- If f(x) is defined on [0, 1] by the rule 23.

$$f(x) = \begin{cases} x : x \text{ is rational} \\ 1 - x : x \text{ is irrational} \end{cases}, \text{ then } f(f(x)) =$$

(A) constant

(C) x

- (B) 1+x(D) None of the above
- If $f(x) = x^3 + 5x 8$ is divided by x-2, what will be the remainder? 24.
 - (A) 25

(B) 42

(C) 16

- (D) 10
- The determinant of the matrix 0 1 0 is 25. 1 0 1
 - (A) 2

(B) 0

(C) -1

(D) -2

- 26. The function $f: R \rightarrow R$ defined by $2x^3+1$ is
 - (A) one-one onto
- (B) one-one into
- many-one into
- (D) many-one onto
- The maximum and minimum value of the function $f(x) = 1 + \sin^2 x$ is 27.
 - (A) 1, 0 (C) 2, -2

- (D) 1,-1
- The function $f(x) = \tan k x$ satisfies the relation 28.
 - (A) $f(x+y) = \frac{f(x) + f(y)}{1 f(x)f(y)}$ (B) $f(x)+f(y) = f\left(\frac{x+y}{1-xy}\right)$
 - (C) $f(x+y) = \frac{f(x)+f(y)}{1+f(x)f(y)}$ (D) f(x+y) = f(x)f(y)
- 29. Which one of the following functions is even?
 - (A) $f(x) = x^{2n+1}$
- (B) cos2x
- (C) $f(x) = \sin x$
- (D) $f(x) = \log \left| \frac{x-1}{x+1} \right|$
- 30. If a rectangle has perimeter 24 feet, its area (in square feet) cannot
 - (A) 28

(B) 14

(C) 36

- (D) 20
- If x tends to zero, $(\sin x \cos x)/x$ tends to 31.
 - (A) 1

(B) 2

(C) 4

(D) 1/2

(A) $-\pi/2$

(B) $-3\pi/4$

(C) $\pi/4$

(D) $3\pi/4$

33. If $f: R \to S$, defined by $f(x) = \sin x - \sqrt{3} \cos x + 1$, is onto, then S is the interval

(A) [0,1]

(B) [-1,1]

(C) [0,3]

(D) [-1,3]

34. The number of curves satisfying $dy/dx = e^x$ and passing through (0,0) and (2, -1) is

7

(A) 1

(B) 2

(C) 0

(D) 2 (D) 3

35. The number of solutions of the equation |x-2| + |x-5| = 3 is

(A) 1

(B) 2

(C) 3

(D) infinite

36. If $\int logx dx = xlogx + ax$, then a =

(A) -1

(B) 2

(C) 1

(D) 0

37. $\int_0^{\pi/2} 1/(1+\tan x) dx =$

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{2}$

(C) $\frac{\pi}{4}$

(D) $\frac{1}{2}$

	그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그
138.	If $dy/dx = 2y$, then y may be
	(A) $\sin x$ (B) $\cos x$ (C) $\sin 2x$ (D) e^{2x}
39.	The rank of an $n \times n$ matrix having all entries 1 is
	(A) 0 (B) 1 (D) $n-1$
40.	If a 4×4 matrix A with real entries satisfies the equation $x^3 = I$, where I is a unit matrix, then the rank of A is
	(A) 1 (C) 3 (B) 2 (D) 4

41.	The number	of solutions	of the	equations	2x +	- 3 <i>y</i> =	5 and	4x +	6y =	= 9	is
				the state of the s							

(A) 0

(B) 1

(D) 4

(C) 2

(D) infinite

42. If a, b, c, d is 1 or -1, then maximum value of the determinant ais

> (A) 1 (C) 0

(B) 2 (D) 4

If the determinant of a 4×4 matrix A is 1, then the determinant of -A 43. is

(A) 1

(B) 4

(C) -4

(D) -1

- 44. A triangle is uniquely determined if
 - (A) lengths of its sides are known
 - (B) interior angles are known
 - (C) one angle and one side are known
 - (D) two sides and one angle are known
- 45. If the sides of a triangle are a,b,c such that $\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = 0$, then the triangle is
 - (A) right-angled
- (B) acute-angled
- (C) obtuse-angled
- (D) equilateral
- 46. If the quadratic polynomial $x^2 y^2 + x y + c$ has two linear factors, then c =
 - (A) 1

(B) 0

(C) -1

- (D) 2
- 47. If T, S, and C are the area of an equilateral triangle, square and circle respectively all having same parameters, then
 - (A) T>S>C

- (B) T < C < S
- (C) T < S < C
- (D) C<T<S
- 48. If ABC is a triangle with right angle at B inscribed in a circle, then the centre of the circle is
 - (A) mid point of AB
- (B) mid point of AC
- (C) mid point of BC
- (D) centroid of ABC
- 49. The value of $\int_{0}^{\pi} |\cos x| dx$ is
 - (A) 1

(B) 2

(C) 0

(D) 3

- The differential equation $\frac{dy}{dx} = \frac{x}{y}$ represents a family of 50.
 - (A) straight lines
- (B) parabolas
- (C) hyperbolas
- (D) ellipses
- An angle between the straight lines $3(x^2-y^2) + 2(x+y) = 0$ is 51.
 - (A) 0

(B) $\frac{\pi}{2}$

(C) $\frac{\pi}{3}$

- (D) $\frac{\pi}{6}$
- The system of circles $x^2 + y^2 4x 6y + c = 0$ has centre 52.
 - (A) (-2, -3)

(B) (4, 6)

(C) (1,1)

- (D) (2, 3)
- If the length of major axis of an ellipse is three times its minor axis, 53. then its eccentricity e is
 - (A) $2\frac{\sqrt{2}}{3}$

- (B) $\sqrt{\frac{2}{3}}$ (D) $4\sqrt{\frac{2}{3}}$
- The radius of the circle passing through the foci of the ellipse 54. $x^2/16 + y^2/9 = 1$ and having its centre at (0, 0) is
 - (A) $\sqrt{2}$

(B) $2\sqrt{2}$

(C) $\sqrt{7}$

- 55. The asymptotes of the hyperbola $xy = c^2$ are
 - (A) xy = 0

(C) xy = c

(D) x = 1, y = 2

56. The length of the chord of the circle $x^2 + y^2 = 25$ at a distance 3 from its centre is

(A) 8

(B) 4

(C) 5

(D) 10

57. The equation of the common chord of the circles $x^2 + y^2 - 6x = 0$ and $x^2 + y^2 - 4y = 0$ is

- (A) 3x+2y+1=0
- (B) 3x-2y=0
- (C) 3x+2y=0

(D) 3x-2y-1=0

The length of tangent from (5, 1) to the circle $x^2 + y^2 + 6x - 4y - 3 = 0$ is

(A) 81

(B) 49

(C) 7

(D) 21

The line x - y + 2 = 0 touches the parabola $y^2 = 8x$ at the point

(A) (2,-4)

- (B) $(1, 2\sqrt{2})$
- (C) $(4, -4\sqrt{2})$
- (D) (2,4)

60. The points of intersection of perpendicular tangents to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ lie on a circle whose radius is

(A) a+b

(B) *ab*

(C) $\frac{b}{a}$

(D) $\sqrt{\left(a^2+b^2\right)}$

61. If the surface area of a cuboid is 36, its maximum volume is

(A) $6\sqrt{6}$

(B) 6

(C) 36

(D) 216

67.

(C) $\frac{\pi}{2}$

		12		
62.	A solution of the	equation $\nabla^2 \varphi =$	0 is ca	lled a
	(A) Laplace (C) Legenda	's function re polynomial	(B) (D)	Bessel's function Harmonic function
63.	If $r = xi + yj + zk$	r, then $\nabla r =$		
	(A) 3 (C) r	epero iac	(B) (D)	$ \begin{array}{c} x + y + z \\ 1 \end{array} $
64.	If $f(x, y, z) = 0$ normal to the sur	be the equation of face at the point (of a surf (x, y, z)	face, then a vector along the
	(A) grad <i>f</i> (C) div <i>f</i>	1 3 m		curl f None of the above
65.	If $\bar{a}, \bar{b}, \bar{c}$ are unit	vectors, then $[\bar{a} -$	\vec{b} , \vec{b} – \vec{c}	$[\bar{c},\bar{c}-\bar{a}]=$
	(A) 1 (C) 3	- January	(B) (D)	
66.	If \overline{a} and \overline{b} are u	nit vectors and \bar{a} .	$\overline{b} = \frac{1}{2}$	then $\left[\bar{a}, \bar{b}, \bar{a} \times \bar{b}\right] =$
	(A) 1/4 (C) 0		(B) (D)	1 3/4

If $\overline{a}, \overline{b}, \overline{c}$ are unit vectors such that $\overline{a} - \overline{b} + \overline{c} = 0$, then the angle between \overline{a} and \overline{c} will be

68. Curl(grad f(x, y, z)) =

(A) 1

(B) 0

(C) 2

(D) 3

69. Which one of the following functions is harmonic?

- (A) x + y + z
- (B) $x^2 + y^2 + z^2$
- (C) $x^3 + y^3 + z^3$
- (D) $x^4 + y^4 + z^4$

70. If \vec{r} is the vector with components x, y, z, then curl $\vec{r} =$

- (A) $3\overline{i} + 2\overline{j} + \overline{h}$
- (B) $\overline{i} + \overline{j} + \overline{k}$

(C) $\overline{0}$

(D) $\overline{i} + 2\overline{i} + 3\overline{k}$

ENGINEERING MECHANICS

- 71. A force system in which the lines of action of all forces lie in a single plane is called as
 - (A) a collinear force system
- (B) a concurrent force system
- (C) a parallel force system
- (D) a coplanar force system
- 72. The statement, "the moment of a force is equal to the algebraic sum of the moments of its components" is known as
 - (A) the Varignon's principle
- (B) the St. Venant's principle
- (C) the Lami's theorem
- (D) the Hooke's law
- 73. The resultant of two concurrent forces whose lines of action are separated by 60° and magnitudes are 40 kN and 80 kN is
 - (A) $\sqrt{40 \times 80 \times cos60}$
 - (B) $\sqrt{40^2 + 80^2 + 2 \times 40 \times 80 \times cos60}$
 - (C) $\sqrt{40^2 + 80^2 2 \times 40 \times 80 \times cos60}$
 - (D) $\sqrt{40^2 + 80^2 + 2 \times 40 \times 80 \times sin60}$

•	74.	Four forces F , $2F$, $3F$ and $4F$ act along the sides of a square, taken in order. The resultant is
		(A) $2\sqrt{3}F$ (B) $3\sqrt{2}F$
		(C) $2\sqrt{2}F$ (D) $3\sqrt{3}F$
	75.	The force of static friction is always
		 (A) greater than the force of kinetic friction (B) less than the force of kinetic friction (C) equal to the force of kinetic friction (D) None of the above
	76.	In cone of friction angle is equal to angle of friction.
		(A) apex angle (B) twice apex angle
		(C) 1/4 th apex angle (D) half of apex angle
	77.	If the first moment of an area with respect to an axis is zero, its centroid lies
		(A) on the axis (B) on a perpendicular axis (C) on another axis (D) above the axis
	78.	Centre of mass and centre of gravity of a body coincide if
		 (A) the density of the body is constant (B) the acceleration due to gravity is constant (C) the body has a regular size and shape (D) they never coincide
	79.	Centroid of an ellipse is
		 (A) at the intersection of its major and minor axes (B) anywhere inside it (C) anywhere outside it
		(D) None of the above

	15
80.	The radius of gyration of a circular area of diameter 'D' with respect to one of its diameter is
	(A) $\frac{D}{4}$ (B) $\frac{D}{2}$
	(C) $\frac{D}{\sqrt{2}}$ (D) $\frac{D}{2\sqrt{2}}$
81.	One of the major assumptions in the analysis of a pin jointed truss is
	(A) the loads are acting only at the joints

the centroid of the loads coincides with that of the truss

(C) the forces in the members of the truss are of bending nature

(D) All of the above 82.

(B)

The acceleration of a particle is defined as the time derivative of displacement

(B) time derivative of velocity (C) time derivative of force

(D) time derivative of momentum

A block of weight 5 N falls from a distance of 1 m on to a spring. If it 83. compresses by 20 cm and brings the spring momentarily to rest, the spring constant is

> (A) 100 N/m(B) 300 N/m(C) 500 N/m (D) 1000 N/m

If in a body the distance between any two points do not change due to 84. application of external forces, the body is called as a

> (A) solid body (B) rigid body (C) flexible body (D) particle

1 85.	The line	ear velocity given in terr	of a particle ns of the angr	e at a dist	ance of 'r' from ity, 'ω' as	the rotating
			2.04			
	(A)	$\frac{\omega}{r}$ $r\omega^2$		(B)	$r\omega$	
	(C)	$r\omega^2$		(D)	$r^2\omega$	
86.	Forces	are called c	oncurrent wh	en their lii	nes of action mee	et in
		one point plane	9, 2, 1 7,00		two points perpendicular p	lanes
87.	If two e	equal forces	of magnitude	e P act at a	an angle $ heta$, their	resultant will
	, ,	$P\cos\theta/2$ $2P\tan\theta/2$, ,	$2P \sin \theta/2$ $2P \cos \theta/2$	
88.	Which	of the follo	wing do not h	ave identi	cal dimensions?	
	(A) (B) (C) (D)	Torque an			nomentum	
89.	D'Alen	nbert's prin	ciple is used	for		
	(A) (B) (C) (D)	determini stability o	the problem on the problem of the stresses in floating boomenatic problem.	the truss	to equivalent sta	tics problem
90.	A fram	ed structure	is perfect if	it contains	members equal	to

(A) 2n-3 (B) n-1 (C) 2n-1 (D) 3n-2

91.	Centre	of gravity of a solid cone li	ies on t	he axis at the height							
	(A) (B) (C) (D)	one-fourth of the total height above base one-third of the total height above base one-half of the total height above base three-eighth of the total height above base									
92.	The ce at the t	ntre of percussion of the ho op will be	mogen	ous rod of length L suspended							
		L/2 3L/4		L/3 2L/3							
93.	The rat	tio of limiting friction and no	ormal r	eaction is known as							
	(A) (C)		(B) (D)	angle of friction sliding friction							
94.	The escape velocity from the surface of Earth is approximately equal to										
	(A) (C)	9.81 km/s 14 km/s	(B) (D)	11.2 km/s 22 km/s							
95.	A proje maximi	ectile is fired at an angle θ to an when θ is	o the v	ertical. Its horizontal range is							
	(A) (C)	•	(B) (D)	30 60							
96.	For peri	fectly elastic bodies, the val	ue of th	ne coefficient of restitution is							
	(A) (C)	zero 1.0	(B) (D)	0.5 between 0 and 1							
97.	If the m	omentum of a given body is	double	ed, its kinetic energy will							
	(A) (C)	increase by 2 times remain same	(B) (D)	increase by 4 times get halved							

18 Two pieces of steel and brass having mass of 2 kg and 1 kg 1 98. respectively, fall freely under action of gravity from a tower. After a distance, which of the following will be identical? (A) acceleration (B) momentum (C) kinetic energy (D) potential energy A ship will sink if it does not displace water equal to its own 99. (A) volume

In order to double the period of simple pendulum 100.

(A) the mass of its bob should be doubled the mass of its bob should be quadrupled (B)

its length should be doubled (C)

(D) its length should be quadrupled

In case of Simple Harmonic Motion the period of oscillation is given by

(A) $T = 2\omega/\pi^2$

(C) surface area

(B) $T=2\pi/\omega$

(B) density

(D) weight

(C) $T = \omega/2\pi$

(D) $T = \pi/2\omega$

A body in Simple Harmonic Motion will have maximum velocity 102. when its amplitude is

(A) maximum

(B) -ve maximum

zero (C)

(D) average

Angular speed of a second's hand of a clock is 103.

(A) $\pi \operatorname{rad/s}$

(B) $\pi/6 \text{ rad/s}$

(C) $\pi/15 \text{ rad/s}$

(D) $\pi/30 \text{ rad/s}$

Distance of the centroid of a semi circle of radius R from its base is 104.

(A) $4R/3 \pi$

(B) $3\pi/4R$

(C) $4 \pi/3R$

(D) $2\pi/3R$

b come on frames moved at many	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10214		
L	. 19	
 105.	Ratio of Moment of Inertia of a rectangle and that of a triangle, havin same base and height with respect to their bases will be	g
	(A) 2:1 (C) 4:1 (B) 3:1 (D) 5:1	
106.	A bullet of mass 0.03 kg moving with a speed of 400 m/s penetrate 12 cm into a fixed block of wood. The average force exerted by the	es

12 cm into a fixed block of wood. The average force exerted by the wood on the bullet will be

(A) 10 kN (B) 20 kN

	(C)	30 <i>kN</i>				9	(D)	40 k	N				
107.	A motor	orbike s seconds	starts and th	from en de	rest eceler	and	acc at 8	elerate m/s²	es at until	a it	rate stops.	of 4 The	m/.

(A) 100 m (B) 200 m (C) 300 m (D) 500 m

108. A body of mass 10 kg moving with a velocity of 1 m/s is acted upon by a force of 50 N for 2 seconds. The final velocity will be

(A) 22 m/s (B) 10 m/s (C) $\sqrt{21 \text{ m/s}}$ (D) 11 m/s

109. Two metallic blocks having masses in the ratio 2:3 are made to slide down a frictionless inclined plane starting initially from rest position. When these blocks reach the bottom of the inclined plane, they will have their kinetic energies in the ratio

(A) 2:3 (C) 3:2 (B) 3:5 (D) 7:4

110. The displacement-time graph for two particles A and B are straight lines inclined at angles of 30° and 45° with the time axis. The ratio of velocities V_A : V_B will be

(A) 0.33 (C) 0.577 (B) 0.52 (D) 0.877

ENGINEERING GRAPHICS

111	. What	grade of pencil i	s used for drawing	ng the construction I	adsbro
				ene construction I	ines?
	(A)	A		B) HB Pencil	
	(C)	2H pencil			
110					
112.	What	is the BIS code re	COmmended for		
			- ormitetided 101	engineering drawin	g?
	(A)	BIS 696-1972	(T)\ Dro	
	(C)	BIS 696-2000	(1	B) BIS 456-1978	
				D) BIS 696-1964	
113.	The si	ze of drawing ation A3 is	sheet as per I	ndian Standard for	the sheet
	(4)	0.41			
	(A)	~ ~ ~ ~ ~ 111111	(B) 594×841 mm	
	(C)	420×594 mm	(D	2) 297×420 mm	•
114.	TX71			- ALLELI	
1.17	building	O m length of a g, what is the sca	building is draw le of the drawing	on as 20 mm in the	plan of the
	(A)	1:50	b lur		
	(C)			1:500	
			(D)	1: 20	
115.	An obje R.F.	ct having 30 m h	eight is drawn a	s 3 cm in a drawing	. Find the
	(A)	1/1000			
	(C)	1/10	(B)		
	(0)	1/10	(D)	1/50	
116.	R.F. of a	scale is 1/1000. h of a scale?	Maximum leng	th of object is 50 m	. What is
	(A)	100 mm			
	4	5 mm	(B)	50 mm	
	(-)	- 111111	(D)	10 mm	
117.	The value	of eccentricity	of ellipse is		
	(A) 1	ess than 1.0			
		nore than 1.0	(B)	equal to 1.0	
	(-)	U.I man v.v.	(D)	equal to 2.0	

118.	The latus rectum of a parabola is t	the double ordinate passing inrough
	the	and the second second
	(A) focus (C) apex	(B) directrix (D) vertex
119.	The angle of inclination of hatchin	g lines is
	(A) 30 degrees (C) 60 degrees	(B) 45 degrees (D) 90 degrees
120.	The length obtained on 30 degre projector from the true length la called	es inclined line by drawing vertical id on a 45 degrees inclined line is
	(A) Isometric projection(C) Isometric scale	(B) Isometric length(D) Isometric drawing
121.	The shape of a square in isometric	e view is
	(A) rhombus (C) cube	(B) parallelogram (D) prism
122.	The shape of a sphere in isometri	c view is
	(A) sphere (C) circle	(B) ellipse (D) parabola
123.	If R is the radius of a cone and the formula to calculate the inclugiven by	L is the slant height of the cone, then aded angle of development of a cone is
,	(A) (R/L)×180 degrees (C) (R/L)×360 degrees	(B) (L/R)×360 degrees (D) (L/R)×180 degrees

1 124. Hidden lines are drawn as	
 (A) dashed narrow lines (B) dashed wide lines (C) long-dashed dotted wide line (D) long-dashed double dotted wide line 	
125. The line connecting a view to a note is called	
(A) dimension line (C) leader line (B) projection (D) arrowhead	line s
126. Methods of arrangement of dimensions includes	
 (A) parallel, continuous and combined (B) perpendicular, parallel and combined (C) perpendicular, continuous and combined (D) perpendicular, parallel and continuous 	
127. A curve drawn for Boyle's law (PV = constant) on a I characteristic shape of	P-V chart has a
(A) ellipse (C) oblique hyperbola (B) parabola (D) rectangular hy	perbola
128. The profile of a gear teeth is in the form of	
(A) parabola (C) circle (B) involute (D) helix	
129. The included angle of a hexagon is	
(A) 30° (C) 120° (B) 60° (D) 150°	
130. The curve generated by a point on the circumference of a rolls without slipping on the outside of another circle is kn	circle, which
(A) Hypocycloid (B) Epicycloid (C) Cycloid (D) Trochoid	

131. In orthographic projections, the rays	are assumed to
(A) diverge from station point(C) be parallel	(B) converge from station point(D) None of the above
132. If an object lies in third quadra reference planes will be	
(A) infront of V.P., above H.P.(C) behind V.P., below H.P.	(D) milione of vizi,
133. If the Vertical Trace (V.T.) of a li (XY), then its position will be	ne lies 30 mm above reference line
(A) 30 mm infront of V.P.(C) 30 mm above H.P.	(B) 30 mm behind V.P.(D) 30 mm below H.P.
134. When an object is cut by a sperpendicular to V.P., then the true	ection plane parallel to H.P. and shape of the section is obtained in
(A) top view (C) left side view	(B) front view(D) right side view
135. Which of the following object gi completely by a section plane i section plane?	ves a circular section, when it is cut rrespective of the inclination of the
(A) Cylinder (C) Cone	(B) Sphere(D) Circular lamina
136. Which of the following is an enla	argement scale?
(A) 10:1 (C) 1:10	(B) 1:1 (D) 10:100
137. Which of the following scale rep	presents 0.125mm to a metre?
(A) 8000:1 (C) 0.125:1	(B) 1:125 (D) 1:8000

t is	

1 13	8. As p	er BIS standard, the s			
		The S	urrace area c	of the Ao sheet is	
	(A	0.1 m^2		•	
	(C	0.01 m ²	(B) 10 m^2	
		, 0.01 111		D) 1 m^2	
139	A.cha	in lime:	•	, ~	
	2 L CIII	in line is used to repr	esent		
			7 1.		
	(A)		(1		
	(C)	dimension line		B) invisible edges	
1.40			(1	axis of a solid	
140.	The ra	tio of the distance on	41 , .	to the actual distance is known	
	as	arotanice Oil	the drawing	to the actual distance is leave	
				distance is known	Wn
	(A)	Tenrecentati c			
	(C)	representative fract	ion (B	least count	
	(0)	resolution	Ò) accuracy	
141.	A mlan	0 0-1	\	decuracy	
	enon-p	e scale with RF 1:40	to show d	ecimetre and metre and lor	
	chough	to measure 5 m. Wh	at is the lens	the College and metre and lor	19
			a to the leng	in of the scale?	~
	(A)	100 mm			
	(C)	150 mm	(B)		
			(D)		
142.	The shar	pe of the section 1			
	section r	plane inclined	uned by cutt	ing a right circular cone by a	
	generato	re is	axis of the co	one and parallel to	1
	Samuel	10 19		paramer to one of the	3
	(A)	alu 1			
		circle	(B)	ellipse	
	(C)	parabola	(D)		
143.	Y-1			hyperbola	
143.	For a con	nic section, the ratio	of the dia	nce of the point P from the	
	focus F to	its perpendicular dis	or the distan	ace of the point P from the	
		a 1 marodial (118	tance from t	he directrix is called	
	(A) F	ocal length			
	(C) R	Ladius of curvature	(B)	Eccentricity	
	()	cadius of curvature	(D)	Pitch	
144.	For a humo	Sul. 1 .1			
,	or a nype	erbola, the eccentricit	y is		
		qual to 1	(P)		
	(C) gr	eater than1	(D)	ess than 1	
			(D) ()	

145.	that the sur	n of its distances from lis equal to 152 mm. The	the tw	t P moves in such a way o fixed points is always f the point is
	(A) elli (C) hyp		(B) p (D) h	arabola elix
146.	with unifor	moves radially outward from velocity to its peripher. The locus of the point v	ery w	e center of a circular disc hen the disc rotates at a
	(A) he (C) log	lix garithmic spiral	(B) A (D) c	Archimedian spiral cycloid
147.	A line AB	40 mm long is lying on H is 10 mm from the V.P.	.P. and	l perpendicular to V.P. The nt view will be
	(B) a (C) a	point 10 mm above the ref point 10 mm below the ref line perpendicular to the re point on the reference line	erence eferenc	line
148.	The isom	etric length = × Tru	e lengt	h
	(A) 0 (C) 1		(B) (D)	1.82
149.	In a perspect	pective view, the position is viewed is known as	of the	observer's eye from where
		station point vanishing point		central plane center
150	. In an obl	ique perspective, the numb	per of v	anishing points are
	(A) (C)	1 3	(B) (D)	2 4
٠,				

GENERAL ENGINEERING

15	1. Vicat	Apparatus in	to too grade	arthur.	J - Kripa	
		- Apparatus IS	to determine	which p	roperty of cemen	+9
	(A) Fineness		•	i or ocilici	IL.
	(C			(B)	Soundness	04
	(0) Normal cor	isistency	(D)		
15	2. Which	h milas	day bit.		ootting tillie	
		h piles are also	called spur	piles?		
	(A)					ile fare.
	(C)	PIIC	S	(B)	Batter piles	
	(0)	Friction pile	S	(D)	DATE OF	
153	. Efflore	escence in			pites	
		escence in cem	ent is caused	due to e	excess of	
	(A)				phyllinge .	
	(C)			(B)	iron-oxide	
	(-)	onica		(D)		
154	Compa	red to mild at-	**************************************		ena N	
	i) High	red to mild ste compressive s	el; cast iron	has	ah iy	
	ii) High	tensile streng	trength			
	iii) Low	compressive	un			
	iv) Low	tensile streng	strength			
		out off citig	ш			
	The com	rect answer is				
	(A)	(i) and (ii)				
	(C)	(iii) and (iv)		(B)	(ii) and (iii)	
				(D)	(i) and (iv)	
155.	Crushing	strength of a	first al. 1		d not be less than	
		3 01 4	ritst class bri	ck shoul	d not be less than	a
	(A)	$3.5 \mathrm{N/mm^2}$				
	(C)	10.5 N/mm ²		(B) 7	7.0 N/mm ²	
				(D) 1	4.0 N/mm ²	
156.	As per	1S: 456-2000	minim		of concrete in	
	construct	ions is	, minimum	grade o	of concrete in	sea water
	(A) N	M20		(70)		
	(C) N	430		******	125	
				(D) M	150	

	2	7
157.	In case of foundations on black to increase the bearing capacity	cotton soils, the most suitable method of soils is to
	 (A) increase the depth of form (B) drain the soil (C) compact the soil (D) replace the poor soil 	oundation
158.	Workability of concrete is inve	rsely proportional to the
	(A) time of transit(C) air in the mix	(B) water-cement ratio(D) size of aggregate
159.	Slump test of concrete is a mea	isure of its
	(A) consistency(C) tensile strength	(B) compressive strength(D) impact value
160.	A 'level line' is a	
	(C) line passing through	ean spheroidal surface of earth the centre of cross hairs and the centre of the objective lens and the eye-piece of a
161.	Two gases at same temperature. The mixture has volume V at the mixture?	re T, pressure P and volume V are mixed. and temperature T. What is the pressure of
	(A) P/2 (C) 2P	(B) P (D) 4P
162	NTP corresponds to tempera	ture of
	(A) 0K (C) 273K	(B) -273K (D) None of the above

				20			A STATE OF THE
, 1	63. A	metallic ball b					and the same of
	wl	metallic ball hat hat happens to t	as spherical che cavity?	avity a	it its centre.	If the ball	is heated
		(A) Its volum	e incres		2000		
		(D). Its volum	A danna				
		(C) Its volum	e remains	hanna	4		
		(D) Its volum	ne may decre	ease o	r inom		
7		nature of	metal		increase	depending	ipon the
16	4. In v	which of the fo ains constant?	llowing -				
	rem	ains constant?	nowing proce	esses th	ne internal e	nergy of the	System
							- by stelli
		A) Adiabatic		/*			
	((C) Isobaric			3) Isochori	С	
165	T.C. 41) Isothern	nal	
103	· II th	e temperature	of sink is abs	olute :	7ero 41 co		
	cugii	e temperature one should be			cto, the eff	iciency of t	he heat
) zero					
	(C	,		(B	50%		
		7 10070		(D		he above	
166.	The d	OOI of a refrice				arc above .	
		oor of a refrige	rator is kept o	pen. V	Which of the	following i	c true?
	(, ,)	Trouiti 12 Cou	led				s uue?
	(B)	Room is hear	ted				
	(C)	Room neithe	T cooled 1				
	(D)	Room will be	cooled in an	leated			
167.	Υ	Room will be	a voct III Sti	mmer a	and heated in	n winter	
107.	in which	ch stroke the us	eful work is	lone in	0000 611		
	(4)			TOTIC III	case of the	petrol engin	e?
	(21)	Suction		(B)			
	(C)	Expansion		(D)	Compression Exhaust	on	
68.	No head	hamis to			LAMAUST		
	Source	t engine can ope This statement	erate by excha	anging	heat with air	m 1 - 1	
	source.	This statement	refers to	φφ	model with ST	ngle temper	ature
	(A)	Joule Law	i (k. 1942)				
	(C)	Clausing at-		(B)	Carnot The	Tram	
		Clausius stater	nent .	(D)	Kelvin Plan	k statement	
		1 4 1				-r orgrestitell	

169.	In a Car	not Cycle th	ne heat rejection	n is		
	(A) (C)	at constant	temperature pressure	(B) (D)		constant volume adiabatic process
170.	Which	of the follow	wing is not a pa	irt of ste	am	engine?
	(A) (C)	- 4	l v v v v	(B) (D)	-	am shaft ccentric
171.	Why w	ve prefer co	nstantan wire fo	or maki	ng st	tandard resistors?
	(D)	High resi High tem Low tem	stivity perature coeffi perature coeffi	cient of	1031	Statico
172.	Two 2	2 kilo ohm ination is eq	and 0.5W resi uivalent to	stors ar	e cc	onnected in parallel. Their
	(C) 1 kilo ol	nm and 0.5W nm and 1W	(I))	4 kilo ohm and 1W 1 kilo ohm and 0.5W
173	. To in	crease the r	ange of an amr	neter, w	e ne	ed to connect a suitable
		A) low resi	stance in paral	,	B) D)	low resistance in series high resistance in series
174	The	coupling co	efficient of per	fectly c	oupl	ed coils is
		A) zero C) more tl	nan 1		(B)	1 infinite
17	5. Res	istivity of a	wire depends of	on .		
		(A) length (C) cross	section area		(B) (D)	material None of the above
,						

176. Two bulbs marked 200 w. joined in series to 250 volts	att-250 volts and 100 watt-250 volts are supply. Power consumed in the circuit is
	pp. 1 ower consumed in the circuit is
(C) 100 watt	(B) 67 watt
	(D) 300 watt
177. Ampere second could be the	unit of
(A) power	(D)
(C) energy	(B) conductance
170	(D) charge
178. An ideal liquid insulating mate	erial should have low
(A) heat conductivity	•
(A) heat conductivity (C) mechanical strength	(B) dielectric strength (D) volatility
179. Which of the car	(2) Volatility
Which of the following is a gas	Seous incular
	leous misulating material?
(A) leflon	
(C) Stealite	(B) Sulphur hexafluoride
	(2) I IIII O CODIta mai
	mitude 5 Ohm each are connected in any two pair of terminals of the delta
(A) 5 Ohm	
(C) 10/3 Ohm	(B) 5/3 Ohm
	(D) 3/5 Ohm
181. Most commonly used	
state device is	n the manufacture of electronic solid
(A) silicon	
(C) copper	(B) germanium
	(D) aluminium
182. Transistor can be used as	
(A) full wave rootic	
Trave lection	(B) half wave rectif
(C) filter	THE THE LEGISTAN
	(D) amplifier

183.	The devices which convert information into electrical signal is called					
	(A) (C)	Transmitters Transducers		Receivers Modulators		
184.	Which t	ype of data does optical fibr	re deal v	with?		
		Analog Modulated		Digital Un-modulated		
185.	Each diode in a centre tapped full wave rectifier is biased and conducts for degree of the input cycle.					
		forward, 90 forward, 180		reverse, 180 reverse, 90		
186.	The d.c. resistance of a diode with increase in diode current or voltage					
	(B) (C)	increases decreases does not change increases first and then de	creases			
187.	For amplifier applications, a BJT is operated in					
	(C)	active mode cut off mode saturation mode both saturation and active	mode			
188.	A bypass capacitor produces					
		d.c ground both a.c and d.c ground		a.c ground None of the above		

189.	Given 5 KH	a carrier frequency, the bandwidth	ncy of 100 requirement	KHz of A	and a modulating freq M transmission is	uency of	
- Carlo	(A)) 5 KHz	nohenti	(B (D) 10 KHz		
190.	Crosso	over distortion oc	curs in				
	(A) (C)	push-pull ampl class B amplifi	ifiers ers	(B)			
191.							
	(A) (C)			(B) (D)	0		
192.							
	(A) (C)	FORTAN COBOL		(B) (D)	PASCAL	, , ,	
193.	In compilers, the syntax analysis is done by						
	(A) (C)	lexical analyzer parser		(B) (D)	scanner code generator		
194.	The instructions constituting a programme are executed in						
	(A) (C)	the chipset RAM		(B) (D)	processor ROM		
195.	The CPU fetches instructions from						
		pen drive cache/RAM		(B) (D)	hard disk CD		

196.	Which o	f the following is not an	output device?			
	(A) (C)	LCD monitor SD card	(B) Pen drive (D) Chipset			
197.	97. The primary memory of a PC is usually					
	(A)	Dynamic RAM Magnetic core	(B) EPROM (D) Tapes			
198.	3. The internet is a type of					
		LAN WAN	(B) MAN (D) internal network			
199.	The ou	tput of a compiler is in				
	(A) (C)	high level language machine language	(B) assembly language(D) natural language			
200.	The br	reak statement is used to	*			
	(A) (B) (C) (D)	stop execution of a problem break the rules	xit from a switch gram			

SPACE FOR ROUGH WORK