60411				
ROLL No.	 en Amerika er	più q intro,	ela n esi ne	get: whatever:

ON, BOOKLET No.

014

TEST FOR POST GRADUATE PROGRAMMES

CHEMISTRY

Time: 2 Hours

Maximum Marks: 450

INSTRUCTIONS TO CANDIDATES

- You are provided with a Question Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil your OMR Sheet. Read carefully all the instructions given on the OMR Sheet.
- 2. Write your Roll Number in the space provided on the top of this page.
- Also write your Roll Number, Test Code, Test Centre Code, Test Centre Name, Test Subject and
 the date and time of the examination in the columns provided for the same on the Answer Sheet.
 Darken the appropriate bubbles with HB pencil.
- 4. The paper consists of 150 objective type questions. All questions carry equal marks.
- 5. Each Question has four alternative responses marked A, B, C and D and you have to darken the bubble fully by HB pencil corresponding to the correct response as indicated in the example shown on the Answer Sheet. Also write the alphabet of your response with ball pen in the starred column against attempted questions and put an 'x' mark by ball pen in the starred column against unattempted questions as given in the example in the OMR Sheet.
- 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark.
- Please do your rough work only on the space provided for it at the end of this question booklet.
- You should return the Answer Sheet to the Invigilator before you leave the examination hall.
 However Question Booklet may be retained with the Candidate.
- Every precaution has been taken to avoid errors in the Question Booklet. In the event of such unforeseen happenings, suitable remedial measures will be taken at the time of evaluation.
- 10. Please feel comfortable and relaxed. You can do better in this test in a tension-free disposition.

SEA

IVISH YOU A SUCCESSFUL PERFORMANCE

CHEMISTRY

2. RMgBr
$$\frac{\text{(i) ZnBr}_2}{\text{(ii) H}_2\text{O}}$$
 ?

(A) R-OH

(B) R-H

(C) R-Br

(D) R-R

the name of the reaction is

- (A) Wurtz reaction
- (B) Franktand reaction
- (C) Williamson's synthesis
- (D) Kolbe's reaction
- 4. Among the following, which does not form enolates?
 - (A) Carboxylic acid
- (B) Simple ketone

(C) 1,3-diketones

- (D) 1,4-diketones
- 5. Among the following reaction, which involve carbene intermediate?
 - (A) Kolbe's reaction
- (B) Riemer-Tiemann reaction
- (C) Hoesch reaction
- (D) Perkin reaction

The reaction is called as

- (A) Cycloaddition
- (C) Alder-ene

- (B) Diels-Alder(D) Sigmatropic
- One of the carboxylic acids obtained from the oxidation of Citral with alkaline permanganate, followed by chromic acid oxidation is
 - (A) malonic acid

(B) succinic acid

(C) laevulic acid

- (D) p-isopropyl benzoic acid
- 8. Lindlar catalyst is used for
 - (A) the nitration of aromatic hydrocarbons
 - (B) the dehydration of secondary alcohols
 - (C) the partial reduction of alkynes to cis olefins
 - (D) the partial reduction of alkynes to trans olefins
- 9. Which of the following nitrogenous bases is not found in DNA?
 - (A) Guanidine

(B) Thymine

(C) Adenine

- (D) Guanine
- 10. Allylic bromination of olefins is usually carried out with
 - (A) phenylmagnesium bromide
- (B) N-bromosuccinimide
- (C) a-bromo toluene
- (D) pyridine perbromide
- 11. Two moles of acetone under the influence of sodium hydroxide will yield
 - (A) 4-hydroxy-4-methyl-2-pentanone
 - (B) 4-methyl-2-pentanone
 - (C) 4-hydroxy-2-pentanol
 - (D) 4-hydroxy-2-pentanal
- 12. Which one of the following is the organic solvent that prevents the greatest fire hazard?
 - (A) ethanol

(B) CC1₄

(C) kerosene

(D) $C_2H_5OC_2H_5$

		3		
13.	The Hell-	Volhard-Zelinsky reaction'i	s used in	d in mesonal e i di
	(A) s	synthesis of 1°-amines	ather per-	color with region
	(B)	synthesis of α-bromo acids	Lac respect	T
	(C) :	synthesis of β-bromo acids		er political exercision
	(D)	protection of the N-terminal	group of	the peptide
14.	Ozonoly	sis of fatty acids is a techniq	ue used f	or determining
	(A)	number of OH groups	(B)	number of -COOH groups
F	(C)	ability to form soaps	(D)	position of double bonds
15.	The Hol to that in	ffmann rearrangement has an n the	n intermed	diate that is electronically similar
	TON	Dimenal rearrangement	(B)	Claisen rearrangement
		Pinacol rearrangement Cope rearrangement	(D)	Beckmann rearrangement
16.	N,N-Di	methyl aniline reacts with ni	trous acid	to give
	(A)	Diazonium salts		Strong Landau Landau
	(B)	N-nitroso-N-methyl aniline	•	
	(C)	p-nitroso-N-N-dimethyl an		1 12 6 7 12
	(D)	aniline		0.000
17.	Pyrrole	is less basic than pyridine b	ecause	
	(A)	pyrrole has its electron pai	r as part o	of an aromatic sextet
	(B)	pyrrole behaves as a cyclic		
14.15	(C)	pyrrole is smaller than pyr	idine	
1	(D)	pyrrole can give off a prot		
18.	In prac	ctical organic chemistry (CH	3)4Si is us	ed mainly for
nië lië b	i amile (A)	a solvent for IR spectra		AM REGENA III
	(A)	a solvette for the sheetta		Office-CONZ.

(B) a solvent for UV spectra
 (C) a spectroscopic standard for ¹H-NMR spectra
 (D) making volatile derivatives of alcohol for mass spectra

	7	4	-	7
6	cv	A	1	•

		52-54	d their number may be determined by
19.	The pre	sence of N-methyl groups an	d then humos as
	means o	of the following methods in alk	aloids
	(A)	Herzig-Meyer method	
	(B)	Hoffmann's exhaustive metho	od .
	(C)		
	(D)	Zerewitinoff method	
	(D)	ZGICWILIII M M M M M M M M M M M M M M M M M	
20.	Alkylni	trile on reduction produces	
	(A)	1º-amines	(B) esters
	(C)	nitroalkane	(D) alcohols
21.	Which	of the following is a Fenton's	reagent?
Test.			
	(A)	Br ₂ /CH ₃ COOH	(B) AgOtVNH₄OH
	(C)	H ₂ O ₂ /Fe(OCOCH ₃) ₃	(D) Ac2O/SOCl2
	m 7	-the tast for differentiating	g 1°, 2° and 3° amines is based on the
22.	The Zi	insperg test for differentiating	, , , , , , , , , , , , , , , , , , ,
	reaction	n of the amine with	
	(A)	PhBr ₂ Cl	(B) PhSO ₂ Cl
	(C)	PhCOPh	(D) PhMgBr
	1-7	A SUPERIOR	2 2 22
23.	Arrang	e the order of nucleophilicity	among the following:
	R-N-1	RO ⁻ , R ₃ C ⁻ , F ⁻	
	14214	NO 1100 11	
28.5	(A)	$R_3C^->F^->RO^->R_2N^-$	(B) R ₂ N ⁻ >F ⁻ >RO ⁻ >R ₃ C ⁻
	X-79	NATION DIS CONTRACTOR CONTRACTOR	NATIONAL DESCRIPTION OF PROPERTY OF THE PROPER
	(C)	$RO^->R_2N^->F^->R_3C^-$	(D) $R_1C^->R_2N^->RO^->F^-$
24.	Arrang	e the reactivity order	of the following dienophile towards
0.565.50		entadiene in Diel's Alder read	
	- Janap		
		NC I	
	10	CH₂=CH-CN 2. C=C	3 NC CN A NC CN
	1.0	H C	:N C=C 4. NC-C
		8.81 225	H CN NC CN
	contra a rec	100000	
	(A)		(B) 2<3<4<1
	(C)	4<3<2<1	(D) 4<3<2<1
			The state of the s

1.100

25.	Among the halogens arrange the order	er of basicity
	(A) F ⁻ >Cl ⁻ >Br ⁻ >l ⁻ (C) Cl ⁻ >Br ⁻ >l ⁻ >F ⁻	(B) I > Cl > Br > F (D) F > Br > Cl > I
26.	Arrange the following compounds bromide ion under S _N ¹ reaction cond 3. CH ₂ =CHCl, 4. CH ₃ Cl	inorder of increasing reactivity towards lition. 1. C ₂ H ₅ Cl, 2. CH ₂ =CHCH ₂ Cl,
	(A) 2>3>1>4 (C) 3>2>4>1	(B) 3>2>1>4 (D) 2>1>3>4
27.	C ₆ H ₅ CHO is obtained by catalyticatalyst	c oxidation of C ₆ H ₅ CH ₃ in presence of
	(A) CrO₃ (C) CH₃COOH	(B) MnO ₂ (D) H ₂ O ₂
, 28.	Aryl iodides when refluxed with obiaryls	copper powder, undergo coupling to form
	(A) Wurtz-fitting reaction(C) Paterno-Buchi reaction	(B) Ullmann reaction (D) Wurtz reaction
29.	Perkin reaction involves the cor aldehyde and	ndensation reaction between an aromatic
	(A) aliphatic aldehyde(C) aromatic aldehyde	(B) aliphatic ketone(D) aliphatic anhydride
30.	The unsaturated aldehydes CH ₃ (C) that depends on the value of n. As	H=CH)nCH=O have UV absorption spectra the value of n increases, the λ
	 (A) increases (B) decreases (C) remains constant (D) increases and then decrea 	ses
31.	A part of light may be emitted passed through a medium is called	as light of a longer wavelength when it is
	(A) phosphorescence (C) fluorescence	(B) quenching (D) intersystem crossing

How many signals would be expected in NMR spectrum of each of the following compounds 1. CH3Br, 2. CH3CH2Br 3. CH3CH(Br)CH3 32.

> 1, 2 and 2 (A)

1,2 and 3 (B) (D) 1,2 and 1

- 1, 1 and 2 (C)
- Table sugar is 33.
 - (A) a disaccharide consisting of D-glucose and D-fructose
 - (B) a monosaccharide
 - (C) a disaccharide consisting of 2-glucose units
 - (D) D-glucose

Congo red is 34.

(A) nitro dye

phthalein dye (B)

indigo dye (C)

azo dye (D)

The following tetraene upon photolysis gives 35.

DDT is 36.

- Dichloro Diphenyl Trichloroethane (A)
- (B) Dichloro Diphenyl Trichloromethane
- Dichloro Diphenyl Tribromoethane (C)
- (D) Dibromo Diphenyl Trichloroethane

Enantiomers usually have different biological activities. This is because

- (A) enantiomers always show different chemical properties.
- (B) biological medium generally has many chiral components.
- (C) enantionners have identical physical properties.
- (D) enantiomers do not racemise under biological conditions

38. Which of the following compounds will undergo Cannizaro reaction?

(A) HCHO

- (B) p-nitrobenzaldehyde
- (C) 2-chloro-2-methylpropanal
- (D) all of the above

39. What is the product of the reaction,
$$p$$
- nitrotoluene $\frac{Fe}{H}$?

- 40. Which of the following molecules will have zero dipole moment?
 - (i) o-dichlorobenzene
- (ii) m-dichlorobenzene
- (iii) p-dichlorobenzene
- (iv) 1,3,5- trichlorobenzene
- (A) i and ii

(B) ii and iii

(C) iii and iv

- (D) i and iii
- 41. Which of the following statements about chirality is(are) correct?
 - (i) All alpha-aminoacids are chiral
 - (ii) All molecules with one asymmetric carbon atom are chiral
 - (iii) Chiral molecules always have one or more asymmetric carbon atoms
 - (iv) All molecules with two asymmetric carbon atoms are chiral.
 - (A) only ii

(B) i and ii

(C) i, ii and iii

(D) ii, iii and iv

43. Which of the following is not a structural isomer of cyclohexane?

- .44. Which of the following is a strained molecule?
 - (A) Cyclopropane

(B) Benzene

(C) Cyclodecane

- (D) Pyridine-N-oxide f
- 45. What product will be obtained if propene and 2-methylpropene are treated with hydrogen iodide?
 - (A) 1-iodopropane and 1-iodo-2-methylpropane
 - (B) 2-iodopropane and 2-iodo-2-methylpropane
 - (C) 2-iodopropane and 1-iodo-2-methylpropane
 - (D) 1-iodopropane and 2-iodo-2-methylpropane
- 46. Which of the following reactions is suitable for making neopentyl chloride?
 - (i) Reaction of chlorine with neopentane
 - (ii) Reaction of chlorine with neopentyl alcohol
 - (iii) Reaction of hydrogen chloride with neopentyl alcohol
 - (A) (i) (B) (ii) (C) (iii) (D) (i) and (iii)
- Select the reagent(s) suitable for converting benzoic acid to bezoyl chloride,
 SOCl₂; Cl₂; PCl₅; HCl.
 - (A) PCl₅ (C) SOCl₂ and PCl₅
- (B) SOCl₂ and Cl₂
- (D) Cl2 and HCI

18.	What m	roduct will be o	btained whe	n 2-chlorob	outane is	lehydrohalo	genated?
18.	(A)	Only cis-2-but		(B)	Mainly	cis-2-butene	71 to 1 fg.11
	(C)	Only trans-2-b	outene	(D)	Mainly	rans-2-buter	ne
19,	How m	any ¹ H NMR si	gnals are exp	pected for 1	,3,5-trim	ethylbenzen	e ? ()/
				1.7			film advis.
	(A)	2		(B)	3 12		
	(C)	6		(D)	12		(X) L
50.	Which	compound is ar	omatic?				
	(4)	Cyclopentadie	ane.	(B)	Cyclope	ntadienyl ca	tion
	(A) (C)	Cyclopentadie	envl anion	(D)	Cyclope	ntadienyl ra	dical
	8 35	1/22 10				1 az. 1	
51.	In whic	ch salt are the ar	nion and cati	on iso-elec	tronic?	is, 9.7 = 1.51	(T)
	(A)	LiF		(B)	NaCl		City
	(C)	KCI	*	(D)	KBr		
52.	[Co ²	each pair given I , Co ³⁺] [Fe ²	*, Zn²*] [1	Na', F	[0", 8"	19 mm all	Aldren Salar
	(A) (C)	Co ²⁺ , Zn ²⁺ , F Co ²⁺ , Fe ²⁺ , F	, S ²⁻	(B) (D)	Co ³⁺ , Z	s ²⁺ , Na ⁺ , S ²⁻ n ²⁺ , Na ⁺ , O ²⁻	, a
53.	How n	nany unpaired e	lectrons are	there in an	atom of s	ilver in its gr	ound state?
	(A) (C)	0 2	torestant man	(B) (D)	1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	All ampale 15% is seed. That have	ill erop f " consiste vet south
2.1	1600	of N2O5 reacts	with 10 g of	water to n	roduce 22	g of nitric a	icid, what is
54.	the per	centage yield o	f nitric acid?	ar	0		di.
	(A) (C)	32 % 87 %	T _p	(B) (D)		(Marks II)	(i)
	V-80187			Crabing to	ration to the		43.00
55.	the res	of 0.10 N sodiu	is titrated ag	e is added t ainst 0.10 l	o 20 ml 0 V sodium	hydroxide.	What will be
	the titi	e value at the e	na pomi			42.1	. 11
	(A)			(B)	10 ml 30 ml		
	(C)	20 ml		. (2)			
				TO:			

MAMMAMAN

60411

		10		
56.	ot sodi	eous solution of a substance give um hydroxide are added. The hydroxide is added. The substan	breeri	nite precipitate when a few drops bitate dissolves when excess of y be,
	(A) (C)	aluminium sulphate cadmium chloride	(B) (D)	silver nitrate mercuric chloride
57.	What is	s the charge (n) on the silicate ior	ı Si ₂ O	, ⁿ ?
	(A) (C)	-2 -6	(B) (D)	-4 -7
58.	Silver in the p	is extracted from the crude meta presence of air. The role of NaCN	l by le I is to,	eaching with a solution of NaCN
,* ,*	(A) (B) (C) (D)	form the complex [Ag(CN) ₄] ³ - form the complex, [Ag(CN) ₄] ² -		
59.	CoCl ₄ ²	2- and Co(H ₂ O) ₆ ²⁺ have different	colour	s. This is because
k	(A) (B) (C) (D)	they have different coordinatio they have different number of	n geor	netries
60.	have to	he shape of an equilateral triang	le or a	n bonded to three B atoms may triangular pyramid. Which one, technique to distinguish between
	(A) (B) (C) (D)	measurement of magnetic mon measurement of viscosity		
61.	Whic	h molecule has zero bond order?		1.54
	(A) (C)		(B) (D)	H ₂ He ₂

62.	Which o	ne among the extent in aque	chlorides, ZnC cous solutions?	Cl ₂ , HgCl ₂	, BaCl ₂ , AlCl ₃ ,	is dissociate	d to
	(A) (C)	ZnCl ₂ BaCl ₂		(B) (D)	HgCl ₂ AlCl ₃		
63.	If you includin	were to pre	pare [Cr(oxal and optical, ca	ate) ₂ (OH ₂ n you exp)2] ion, how ect to get?	many ison	ners,
	(A) (C)	only one three	() E =	(B) (D)	two four	at in a soul a	
64.	Identify NOF XeO ₃	+ ClF ₃	he following tw = NO ⁺ = HXeO ₄	+ CI	ns: F ₄ -		
	(A) (C)	CIF ₃ and Xe NOF and OF		(B) (D)	CIF ₃ and OH NOF and Xe		
65.	The ma	agnetic momer his it may be c	nt of Co(H ₂ O) ₆ concluded that	3+ is zero	and that of Mn	(CN) ₆ ³ - is 2.9	B.M
, -43	(A) (B) (C) (D)	both ione ar	e low spin	n(CN) ₆ ³⁻ ; , Mn(CN)	is high spin) ₆ 3– is high spin	d o	*
66.	Which (i) NH		ing molecules/ (iii) CO ₃ ²	ions have (iv)	planar structur BF3	es?	
	(A) (C)	all four		(B)	ii and iii only iv		
67.	Which	h of the follow	ing is the corre	ect represo	entation of a d_x	2_y² orbital?	
		ah- y	,	10.00	· 00- y		

Web Jan

68.	What is industry?	the precurser used for p	roducing ver	y pure silicon for the micros	hip
		SiO ₂ SiC	(B) (D)	SiCl ₄ CaSiO ₃	
69.	Which o	of the following metals ca	annot displace	e hydrogen from steam?	
	(A) (C)	Au Mg	(B) (D)	Zn ,	
70.	Which o	of the following is a valid	d Lewis struct	ture for CO?	
	(A)	•• ••	(B)	:C=0:	
	(C)	:c=0:	(D)	: CEO:	
71.		HClO < HClO ₃ < HClO HClO ₄ < HClO HClO < HClO ₄ < HClO	10 ₄ 0 ₃ < HClO ₄ 0 ₂ < HClO ₄ 10 ₂ < HClO	strength:	
72.	Mirror		ot possible	with tetrahedral & square [ab3] because	planar
	(A) (B) (C) (D)	ligands around central	l metal ion ex l metal ion we	eactly equivalent eakly held	
73.	The ra	ate of aquation of [Co h H ₂ O molecule depend	(NH ₃) ₅ X] co	rresponding to the replacer	nent of
	(A) (B) (C) (D)	nature of X oxidation state of me	tal		

	(A)	
74.	Which reagent may be used to precipitate barium from aqueo	us solutions?
	(A) hydrochloric acid (C) silver nitrate (B) sulphuric acid (D) ammonium cl	l nloride
75.	A sample of water contains 200 ppm of Ca2+ in it. What is t solution with respect to Ca?	he molality of the
	(A) 0.2 m (B) 2 m (C) $5 \times 10^{-3} \text{ m}$ (D) 0.05 m	
76.	Coke is often used in extractive metallurgy. Its major role is,	
15	(A) as an oxidizing agent (B) as a reducing (C) as a fuel (D) to form slag	agent
77.	Dimethylglyoxime reagent is used to test for,	1.400
	(A) Ca^{2+} (B) Ni^{2+} (C) Fe^{3+} (D) Al^{3+}	
78.	Lovie soid as well as a Lewis	base?
	(A) H ₂ O (B) SnCl ₂ (C) NH ₃ (D) BF ₃	A A
79.	for Ni(NH ₃) ₂ Cl ₂ . This is because,	
	 (A) the two complexes differ in the oxidation state of the two complexes differ in the oxidation state of coordination number 	the mean as wen as
	(C) the two complexes differ in their coordination num (D) the two complexes differ in their coordination geo	meity
80.	Callowing reaction:	
	(A) substitution (B) substitution (C) exidation (D) substitution	n and reduction n and oxidation

81.	What are the formal oxidation states of the iron atoms labeled (A) and (B) in
	the compound Fe ^(A) [Fe ^(B) (CN) _a], ?

(A) Fe^(A), 2+ and Fe^(B), 3+

(B) Fe^(A), 2+ and Fe^(B), 4+ (D) Fe^(A), 3+ and Fe^(B), 2+

(C) Fe^(A), 3+ and Fe^(B), 3+

Arrange the following elements in increasing order of their first ionization 82. energy:

Na, Ar, Mg, K

(Λ) K < Na < Mg < Ar</p>

(B) Na < K < Mg < Ar</p>

(C) Na < Mg < Ar < K

(D) Ar < Mg < K < Na

Which two of the following molecules/ions have planar structures? 83.

(i) XeF4

(ii) ClO₄ (iii) PtCl₄² (iv) MnO₄

(A) i and iii

(B) i and ii

(C) ii and iii

(D) ii and iv

- In qualitative analysis, Ag is detected in the first group, while Pb is detected in 84. both first and second groups. This is because,
 - (A) AgCl is much more soluble than PbCl2.

(B) AgCl is much less soluble than PbCl₂.

(C) The solubilities of the chlorides are same, but traces of PbS is easily seen due to its black colour.

(D) AgS is soluble, but PbS is insoluble

- Three examples of molecules/ions having linear geometry may be given as. 85.
 - (A) CO2, NCS and NO2+
 - (B) CO₂, NCS and NO₂
 - (C) NO₂, N₃ and NCS
 - (D) ClO₂, CO₂ and NO₂
- Which of the following metal ions could form both high and low spin 86. complexes in an octahedral array of ligands?

(C) Cu⁺

(D) Zn2+

87.	Which of the following is not a redox reaction?
-----	---

- (A) $2Rb + 2H_2O = 2RbOH + H_2$
- (B) $Cr_2(SO_4)_3 + 6RbOH = 2Cr(OH)_3 + 3Rb_2SO_4$
- (C) $2Ag^{2+} = Ag + Ag^{3+}$
- (D) $2K_4[Fe(CN)_6] + Br_2 = 2K_3[Fe(CN)_6] + 2KBr$
- Which of the following reagents will intensify the hydrolysis of FeCl3 when added to its solution? HCl, NaOH, Na2CO3, NH4Cl, H2O 88.
 - (A) HCl and NH₄Cl

NH₄Cl

(C) NaOH and H₂O

- (D) NaOH, Na₂CO₃ and H₂O
- With which of the following compounds will Zn(OH)2 react? . 89. NaCl; H2SO4; KOH; Fe(OH)3.
 - (A) NaCl and H₂SO₄
- (B) H₂SO₄
- (C) H₂SO₄ and KOH
- (D) KOH and Fe(OH)₃
- Why doesn't the Na2+ ion occur in ionic crystals? 90.
 - (A) It would not be strongly attracted to an anion
 - The energy for the second ionization of sodium is too large
 - Insufficient lattice energy is released to compensate for the (B) (C) endothermic formation of gaseous Na2+ ions
 - Both (B) and (C) (D)
- Which of the following elements is likely to occur in its native state? 91.
 - (A) Cu

(C) Hg

- (D) Fe
- Ions such as Cu+, Ag+, Zn2+, Cd2+, Hg2+ are colourless due to 92.
 - (A) vacant d-orbitals
- (B) half filled d-orbitals
- (C) completely filled d-orbitals
- (D) no d-orbitals involved
- The order of oxidizing ability of F2, Cl2, Br2, I2 and O2 is 93.
 - (A) Cl₂ >Br₂> I₂>F₂> O₂
- (B) I₂ >F₂> O₂> Cl₂> Br₂
 (D) F₂>Cl₂>Br₂>I₂>O₂
- (C) Cl₂>I₂>Br₂>F₂>O₂

94.	How many moles of P ₄ O ₁₀ will react with one mole of water?				
	(A) (C)	2 moles 1/3 mole	(B) (D)	6 moles 1/6 mole	
95.	CuI2 is	unstable because, it readily	decompose	s to	
	(A) (C)	Cu and I ⁻ CuI and I ₂	(B) (D)	Cu and I ₂ CuI and I	Lin
96.	Which	one, among the given ions,	has the high	nest polarizing power	?
£	(A) (C)	Na ⁺ Mg ²⁺	(B) (D)	Ca ²⁺ Al ³⁺	
97.	In its re	action with aqueous soluti	ons of Cu ²⁺ ,	the cyanide ion is sin	nilar to,
,	(A) (C)		(B) (D)	CI ⁻	
98.	Which	ligand can lead to linkage	isomers?	Migrey	
	(A) (C)	Azide Oxalate	(B) (D)	Cyanate Nitrate	141
99.	Which	among the following comp	oounds / ion	s are diamagnetic?	
	CuCl ₆ ⁴	; Cu(SCN); CoCl ₄ ²⁻ ; Ni(C	CO)4; PdCl4 ²		
	(A)	CoCl ₄ ²⁻ and PdCl ₄ ²⁻		- 1	
	(B)	CuCl6 ⁴ , Cu(SCN) and N	li(CO) ₄	30/02/80/20	
	(C)	Cu(SCN) and Ni(CO)4			· Was
	(D)	Cu(SCN), Ni(CO)4, and	Pacl42-		
100.	How m	any isomers are possible f		10 m 20 11 10 m 20 11	
	(A) (C)	Only one Three	(B) (D)	Two Four	. Sa:

101.	A gas mixture contains 20% by mass of helium, 30% by mass of oxygen and rest nitrogen. The partial pressures of the three components in the mixture will have the following relationship
	have the following relationship

(A) helium > nitrogen > oxygen

(B) nitrogen > helium > oxygen

(C) helium > oxygen > nitrogen

(D) nitrogen > oxygen > helium

102. The speed of the electron in the ground state of the hydrogen atom is 2.2×10⁶m/s. What is the wavelength associated with the electron?

(A) 3.3 nm

(B) 0.33 nm

(C) 3.0 nm

(D) 30 nm

103. An element crystallizes in a FCC lattice. How many atoms are there per unit cell?

(A) 1

(B) 2

(C) 3

(D) 4

104. A non-stoichiometric oxide of silver has composition Ag_{1.8}O. What percentage of Ag is present in the form Ag²⁺?

(A) 11%

(B) 14%

(C) 20%

(D) 25%

105. For which one among the following reactions does ΔH° of the reaction represent an enthalpy of formation?

(A) $2 H_2(g) + C(s) \rightarrow CH_4(g)$

(B) $2 \text{ NO}_2(g) \rightarrow \text{N}_2\text{O}_4(g)$

(C) $^{'}$ 2 N₂(g) + 3 O₂(g) \rightarrow 2 NO₂(g) + 2 NO(g)

(D) $CO_2(g) + H_2(g) \rightarrow H_2O(g) + CO(g)$

106. Consider the following three reactions:

 $NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$

 $2H_2(g) + O_2(g) = 2H_2O(g)$

 $2H_2(g) + O_2(g) = 2H_2O(1)$

Which statement regarding the entropy changes (ΔS) in the above reactions is correct?

(A) $\Delta S_1 > \Delta S_2 > \Delta S_3$

(B) $\Delta S_1 > \Delta S_2 = \Delta S_3$

(C) $\Delta S_1 < \Delta S_2 < \Delta S_3$

(D) $\Delta S_1 > \Delta S_2 < \Delta S_3$

			1			
107.	CsF adop what is th	ets the NaCl crystone shortest distance	al structure. If e between the	the u	nit cell edge is of length n and anion in the crysta	1 4.02 Å, il?
	(A) :	2.01 Å		(B)	2.84 Å	
		3.48 Å		(D)	4.02 Å	
108.	The atom	nic volume of a	deuterium ator	n is	the atomic volu	ime of a
	(A)	half		(B)	two times	
	100000000000000000000000000000000000000	three times		(D)	Anne was	
109.	2H ₂ + O (i) i (ii) i (iii) t (iv) t	room temperature	reaction ic reaction eds rapidly as s not take place w	oon a	as the two gases are mixed	
	(A)			(B)		
	(C)	(ii) and (iii)		(D)	(ii) and (iv)	
110.	The rel	lative acid streng	ths of HCl and	HB	Br can not be measured	in water
	because	е.			La Company	
	(A) (B) (C) (D)	both are weaker both are stronge water has a high both Br and Cl	r acids than H ₂ 0 dielectric cons	O stant	gen bonds with H₂O	
111.	In the	Bragg's law equat	ion $n\lambda = 2d \sin \theta$	n <i>θ</i> , α	l refers to	
at 19.0F	(A)	lattice spacing diffraction orde	records — records — recording its	(D)		
					Telescope	
1	EA - 3	5 1 25 78 1				

	,	
112.	From the given bond energy data, calcumole ⁻¹) of methane (Bond energy in kJ mo O-H 463)	late the heat of combustion (in kJ le ⁻¹ : C-H 413; O=O 497; C=O 743;
		B) -263 D) -692
113.	Which of the following four quantities are enthalpy (H) ; entropy (S) ; heat absorb	state functions? ed (q); work done (w)
		(B) q and w (D) H and S
114.	If ΔH represents enthalpy change and ΔE the following is true for the isothermal ex	change in internal energy, which of pansion of an ideal gas?
	(A) $\Delta H > \Delta E$ (C) $\Delta H = \Delta E$	(B) $\Delta H < \Delta E$ (D) $\Delta E = \Delta H + RT$
115.	How does the volume (V) of an ideal gpressure are both doubled?	as change when its temperature and
	(A) V does not change(C) V is doubled	(B) V increases four-fold(D) V is halved
116.	An equimolar mixture of hydrogen and at 100°C and 0.2 atm. pressure. The gas back to 100°C. What will be the pressure	is ignited and the temperature brought
	(A) 0.2 (C) 0.075	(B) 0.15 (D) 0.25
117	7. Under what condition, can one appl reaction, A+B→C?	
	 (A) when the concentration of [A] (B) when the concentration of [A] (C) when the concentration of [B] (D) when A and B are at the same 	s in large excess
		The state of the s

118	A decomposition reaction	2A . D.C is second	order in A.	This mean
LLO.	A decomposition reaction	JA-+HHC IS SECOND	Older m v.	T Ithis

- (A) the plot of [A] versus time is linear
- (B) the plot of log [A] versus time is linear
- (C) the plot of 1/[A] versus time is linear
- (D) the plot of 1/[A]² versus time is linear
- The freezing points of unimotal solutions of HCN and glucose are nearly same. This means
 - (A) HCN is almost fully associated in solution.
 - (B) HCN is almost fully dissociated in solution
 - (C) about 50% of the HCN molecules are dissociated
 - (D) almost all of HCN molecules exist as hydrogen bonded dimers
- 120. Solubility of AgCl (S) is determined in the following four aqueous solvents: pure water, 0.01 M CaCl₂, 0.01 M NaCl, and 0.01 M AgNO₃. What is the correct relationship between the four solubilities?
 - (A) S (pure water) > S (AgNO₃) > S (CaCl₂) > S (NaCl)
 - (B) S (pure water) > S (AgNO₃) = S (NaCl) > S (CaCl₂)
 - (C) S (pure water) > S (CaCl₂) > S (NaCl) > S (AgNO₃)
 - (D) $S(CaCl_2) > S(NaCl) = S(AgNO_3) > S(pure water)$
- 121. In each of the following pairs of solutions, the two aqueous solutions are separated by a semi-permeable membrane.
 - (i) A = 1.0 M NaCl, B = 1.5 M KCl
 - (ii) $C = 3.0 \text{ M CaCl}_2$, D = 3.5 M NaBr
 - (iii) E = 5.0 M sucrose, F = 4.0 M NaCl

In which direction will solvent flow in each case?

- (A) $A \rightarrow B$,
- $C \rightarrow D$,
- $F \rightarrow E$
- (B) $B \rightarrow A$,
- $D \rightarrow C$,
- $E \rightarrow F$ $F \rightarrow E$
- (C) $A \rightarrow B$,
- $D \rightarrow C$,
- (D) $A \rightarrow B$,
- $D \rightarrow C$,
- $E \rightarrow F$
- 122. Which one of the following molecules does not have a dipole moment?
 - (A) CO

(B) HBr

(C) CH₃Cl

(D) XeF₄

One mole of an ideal gas (Cp=29.234 JK⁻¹ mol⁻¹) is expanded vertically and adiabatically from 1dm³. If the initial temperature is 750K, the final temperature will be

(A) 1000K

(B) 750K

(C) 300K

(D) 100K

124. For the reaction 2A + B → C + 2D which is first order in A and also first order in B, the rate is given by

(A) $K[A]^{2}[B]$

(B) $K[A][B]^2$

(C) $K[A]^2$

(D) K [A][B]

125. For an ideal gas following adiabatic reversible expansion, a plot of log P verses log V is linear with a slope equal to

(A) 1/γ

(B) $-1/\gamma$

(C) Y

(D) -Y

126. What happens in a fuel cell?

(A) Electrical energy is used to drive a reaction

(B) Thermal energy is converted to electrical energy

(C) Electrical energy is converted to mechanical energy

(D) Chemical energy is converted to electrical energy

127. The enthalpy of formation of CsCl crystal may be written as follows:
ΔH_f = ΔH of vaporisation of Cs(s) + (1/2) ΔH of dissociation of Cl₂(g) + ΔH of ionisation of Cs(g) + ΔH of electron attachment of Cl(g) + U.

In the above equation, the enthalpy term, U corresponds to the reaction,

(A) $Cs(s) + (1/2) Cl_2(g) = CsCl(s)$

(B) Cs(g) + Cl(g) = CsCl(s)

(C) $Cs^{+}(g) + Cl^{-}(g) = CsCl(s)$

(D) Cs(g) + Cl(g) = CsCl(g)

128. Which of the following statements about the Bohr model is false?

(A) It explains the spectrum of the hydrogen atom

(B) The stability of the electron in its orbit is due to an ad hoc assumption

(C) The model can be readily extended to the helium atom

(D) The angular momentum of the electron is proposed to be quantised

60411		
	22	
129. How m function	any maxima are there in the 1 of a 3p orbital?	plot of radial probability distribution
		ata .
(A)	0	(B) 1
(C)	2	(D) 3
130. The Gi	bbs-Helmholtz equation describ	es,
(A)	the temperature dependence o	of equilibrium constant
(B)	the relation between free ener	gy change and emf of a galvanic cell
(C)		of entropy change
(D)		of free energy change
131. What	is meant by critical temperature	(T_c) of a gas?
2. 4 .0		
(A)	The temperature above which	h the gas behaves like an ideal gas
(B)	The temperature above which	h the gas can not be liquitied
(C)	The temperature below which	h the van der Waals equation applies
(D) The temperature at which 1	mole of the gas can be confined to 22.4 l
	by a pressure of 1 atm.	
132. When	e does the triple point of water l	lie?
(A	At 0°C and 1 atm	- H-
(B	At 100°C and 1 atm	
(0	C) At 1 atm, but below 0°C	- Win - 171
)		106
75 10 10 10 10 10 10 10 10 10 10 10 10 10		
133. At w	hat temperature does an aqueou n-electrolyte in 250 g of water f	us solution containing 3×10 ²³ molecules of
a noi	1-electionate in 230 g of water i	The Control
	1) 260 2 V	(B) 271.1 K
	A) 269.3 K	• • • • • • • • • • • • • • • • • • • •
(0	C) 273.0 K	(D) 276.3 K
134. How	will the notential of a zinc elec	ctrode change if the solution of the zinc salt
134. 110W	hich it is immersed is diluted 1	0 times?
III W	file it is infinerace is ended to	· · · · · · · · · · · · · · · · · · ·
ADDRESS OF THE REAL PROPERTY.	A) It will degrees by 50 my	(B) It will decrease by 30 mv
(.	A) It will decrease by 59 mv	[
I De Carrelland	C) It will increase by 59 mv	
100 S. C.		STATE OF THE STATE
		<i>v</i>
		· · · · · · · · · · · · · · · · · · ·

	12 10	electrolysis of a cupric chloride	e soli	ution, the mass of the	athode
135.	In the	ed by 3.2 g. What occurred at the	coppe	er anode?	
	(A)	112 ml of chlorine was liberated			
	(B)	560 ml of oxygen was liberated			
	(C)	3.2 g of Cu ²⁺ passed into the sol 6.4 g of Cu ²⁺ passed into the sol	ution		
	(D)				w mas a
136.	Which	of the following intermolecular	force	es is important only at	shortest
	distance	es between interacting particles?			
	(A)	Ion-ion	(B)	Ion-dipole	
	(C)	London dispersion forces	(D)	Ion-induced dipole	
177	At lata	a external pressure, water can exi	st at 1	00°C as	
137.	Att tatti	Cateriai process -			
	(A)	only a solid	(B)	solid and liquid	
	(C)	gas	(D)	both liquid and gas	
100	Lindor	what conditions can we absolut	ely sa	ay a system is at equilib	rium, at
138.	Onuci	t pressure and temperature			
	Constan	it pressure and temperature			
	(4)	ΔH=0	(B)	ΔH>0	
	(A) (C)	ΔG=0	(D)	0.0000mm	
	180100				e e e
139.		of the following substances migl	it stat	bilize a colloidal suspens	on of oil
	in wate	r?			
	(A)	Octane, C ₈ H ₁₈			
	(B)	Sodium bicarbonate, NaHCO3		A) 15	
	(C)	Sodium stearate, NaCO ₂ (CH ₂)	16CH	Ax is so	
	0.000	COCl ₂		Y III	
	(D)	(EQ.) (C.M)			
140	Which	of the following is not affected	l whe	en a catalyst influences	gascous
	chemic	al reaction?		- 71	
		The second of the second			
	(A)	Forward and reverse reaction r	rates	4	
	(B)	Initial reaction rate			
	(C)	Value of equilibrium constant			
	(D)	Value of activation energy			
100	10.55A				

141.	The zer	o point energy of a harmonic osc	illato	r is	
	(A)	hω	(B)	Zero	
	(C)	1/2 hw	(D)	2/3 hω	
142.	The foll	lowing mechanism was proposed	for th	ne photolysis of HI into	H ₂ and I ₂
		→ H+I			******
	$2I \rightarrow I_2$	$\rightarrow H_2 + I$			-F
		erall quantum yield of the reactio	n is		
	(A)	0.5	· \	The said	
	(C)	2	(B)	1	
	(0)	2	(D)	4	
143.	Accord the mol	ing to Maxwell distribution, as ecules moving about with root m	tempe ean se	erature increases, the fr	action of
,	(A)	decreases	(B)	increases	
	(C)	remain unaffected	(D)	tends to infinity	
144.	The ent	ropy change associated with the heat of fusion under these conditi	freezi ons is	ng of 1 mole of water at 6.0 KJ/m) is	t 0°C and
	(A)	-6 J/K	(B)	-22 J/K	
	(C)	+22 J/K	(C)(SE)	+6 J/K	
145.	ΔH and constan	1 ΔE for the reaction Fe ₂ O ₃ (s) t temperature are related as	+ 3F	I_2 (g) \rightarrow 2Fe (s) + 3H	₂ O (l) at
-	(A).	$\Delta H = \Delta E$	(B)	AU - AEIDT	
	(C)	$\Delta H = \Delta E + 3RT$	(D)	$\Delta H = \Delta E + RT$ $\Delta H = \Delta E - 3RT$	
146.	The ten	dency of Cu to change into Cu2+	ions i	is extensively low due to	its
55	(A)	electropositive nature			
	(B)	higher electrode potential_		T W TRAILS	
	(C)	negative electrode potential		Texast at [1 Br C	
	(D)	outermost electronic level	4	and the same of th	
				The same of the sa	

147.	What is number	the total number of orbitals $n = 4$?	ssocia	ted with the principal quantum
	(A) (C)	3 16	(B) (D)	4 24
148.	What c	hanges will increase the equilibrate $A(g) + B(g) = C(g)$, if the ΔH^0	rium c	oncentration of product C in the eaction is negative?
	Choose	from the following conditions:		
4	(i) (ii) (iii) (iv)	the addition of a catalyst the addition of an extra amount raising of the temperature lowering of the temperature	of subs	stance B
2	(A) (C)	1.16 (1.16)	(B) (D)	(i) and (iii) (ii) and (iv)
149.	Which	of the following molecules does	not sa	tisfy the Huckel 4n+2 rule?
	(A) (C)		(B) (D)	Phenanthrene Chlorobenzene
150.	Which	of the following is a stable free	radical	?
	(A)		(B) (D)	Trichloromethyl Triphenylmethyl
				21

Scanned by CamScanner