Mamman | 60211 | Ope GPT CI | 11 Sec. 1885-1897 Table 1 | |----------|-----------------|---| | ROLL No. | | #04 · · · · · · · · · · · · · · · · · · · | | * | QN. BOOKLET No. | 013 | #### TEST FOR POST GRADUATE PROGRAMMES #### BOTANY | Time: 2 Hours | E 2 | Maximum Marks: 450 | |---------------|-----|--------------------| | | | | #### INSTRUCTIONS TO CANDIDATES - You are provided with a Question Booklet and an Optical Mark Reader (OMR) Answer Sheet to mark your responses. Do not soil your OMR Sheet. Read carefully all the instructions given on the OMR Sheet. - , 2. Write your Roll Number in the space provided on the top of this page. - 3. Also write your Roll Number, Test Code, Test Centre Code, Test Centre Name, Test Subject and the date and time of the examination in the columns provided for the same on the Answer Sheet. Darken the appropriate bubbles with HB pencil. - 4. The paper consists of 150 objective type questions. All questions carry equal marks. - 5. Each Question has four alternative responses marked A, B, C and D and you have to darken the bubble fully by HB pencil corresponding to the correct response as indicated in the example shown on the Answer Sheet. Also write the alphabet of your response with ball pen in the starred column against attempted questions and put an 'x' mark by ball pen in the starred column against unattempted questions as given in the example in the OMR Sheet. - 6. Each correct answer carries 3 marks and each wrong answer carries 1 minus mark. - 7. Please do your rough work only on the space provided for it at the end of this question booklet. - 8. You should return the Answer Sheet to the Invigilator before you leave the examination hall. However Question Booklet may be retained with the Candidate. - 9. Every precaution has been taken to avoid errors in the Question Booklet. In the event of such unforeseen happenings, suitable remedial measures will be taken at the time of evaluation. - 10. Please feel comfortable and relaxed. You can do better in this test in a tension-free disposition. WISH YOU A SUCCESSFUL PERFORMANCE # SEAL 1. ## BOTANY | 1. | Which | of the following is a living mech | nanica | l tissue? | |--------|-----------------------|---|--------|--| | | (A) | Collarahima | (D) | 0.1 | | | (C) | Collenchyma Parenchyma | (B) | Sclerenchyma | | | (0) | Tarenenyma | (D) | Chlorenchyma | | 2. | Vessel | s differ from tracheids | | i la a militar | | _w £ : | (A)
(B)
(C) | in being water conducting in na
in being living
in being thick-walled | iture | m g | | | (D) | | ows o | f cells with cross wall dissolved | | 3. | The scl | erotium refers to a modified myo | elium | which is | | 20 | (A) | easily carried of by wind | (B) | an underground structure | | • | (C) | mainly a food storing organ | (D) | a hard resting body | | | | , | (2) | a hard resting body | | 4. | The dru | ng artimisinin is obtained from | | · In the contract of contr | | | (A) | leaves | (B) | barks | | | (C) | tuberous roots | (D) | flowers | | | | | (-) | | | 5. | Water b | outter-cup is a common name of | | , " | | | .(1) | n: | | The state of s | | | (A) | Riccia infestans | (B) | Ranumculus peltatus | | | (C) | Pinus roxburghii | (D) | Grimmia maritime | | 6. | Dectin i | s a polymer of | | | | 0. | I COUNT I | s a polymer of | | | | * 9 | (4) | glucose | (D) | | | | (C) | galactouronic acid | (B) | cutin | | | (0) | galaciouronic acid | (D) | mannose | | 7. | Zn ₂₊ is e | essential for the synthesis of the | phytol | hormone | | | (A) | ABA | (D) | Indole 2 | | | (C) | GA ₃ | (B) | Indole-3-acetic acid | | | (0) | Orig | (D) | Ethylene | | 8. | The rate | of transcription of genes is cont | rolled | by regulatory sequences called | | | (A) | enhancers . | (B) | transacting elements | | | (C) | A and B | (D) | inducers | Exalinit again | 9. | Which | among the following plants do | es not tra | anspire? | |-----|--------------------------|--|------------|--| | | (A)
(C) | Algae
Submerged hydrophytes | (B)
(D) | Fungi
All of the above | | 10. | The d | eteriorative process that newsely called | aturally | terminates the plant life are | | | (A)
(C) | senescence
wilting | (B)
(D) | abscission . plasmolysis . | | 11. | Which water? | of the following elements a | re consid | dered essential for photolysis of | | | (A)
(C) | Ca and Cl
Zn and I | (B)
(D) | Mn and Cl
Mg and Fe | | 12. | Apomi | xis refers to the development | of a plant | | | | (A)
(B)
(C)
(D) | without fusion of gametes at
from root cuttings
from fusion of gametes
from pollen grains | nd meios | is | | 13. | Laticife | erous vessels are found in | TITLES | The second second in the second secon | | | (A)
(C) | phloem
xylem | (B) | cortex
tracheids | | 14. | A tumo | our suppressor gene | | The state of s | | | (A)
(C) | suppresses oncogenes inhibits cell division | (B)
(D) | prevents cancer All of the above | | 15. | In whice | ch of the following trees, the art wood? | ere is no | differentiation of bark, sapwood | | | (A)
(C) | Neem
Datepalm | (B)
(D) | | | 16. | The fur | nction of dry fruit is to | | | 9 | |-------|----------
--|------------------------|--------|----------------------------| | | (A) | protect the embryo from herbici | ides | | | | | (B) | | estrial | hal | bitat | | | (C) | Print of the t | | | | | | (D) | disperse the embryo by wind, w | rater a | nd a | animals | | 17. | Soil sal | linity is measured by | | | | | | (A) | calorimeter | (B) | co | nductivity meter | | | (C) | auxenometer | (D) | po | tometer | | 18. | Plants r | requires K* for | | | | | Ŕ. | (A) | protein synthesis | (E | 3) | adhesion of cells | | 2 | 1000 | opening and closing of stomata | (L | 200 | chlorophyll synthesis | | , 19. | Agent | orange is | | | | | | (A) | an enzyme containing chloride | | | | | | 17.5 | a weedicide containing dioxin | | | | | | | a biodegradable insecticide | | | | | | (D) | | | | | | 20. | Which | of the following bacterial strain is | s used | to | control the plant pest? | | | (A) | Pseudomonas | (B) | CI | ostridium | | | (C) | Bacillus thuringiensis | (D) | - 9751 | I of the above | | 21. | Which | among the following nucleotides | /cofac | tors | are water-soluble? | | | (A) | NAD* | (B) | N | ADP* | | | 100 | FMN | Comment of the comment | | ll of the above | | 22. | Seawee | d refers to | | | | | | (A) | diatoms | 4 | | 100 | | | 1000000 | soft-bodied algae | (8) | | * | | | (C) | marine algae that have large mu | ltical | 11- | - badias | | | (D) | the algae having cell walls encr | ucted | iula | b bond and all 11 | | | | Description of the Coll Walls Elkin | CONTRACTOR | WIT | o paro ano challes donored | | 23. | Phyllod | derm consists of | | and and are | |---------|--------------------------|--|------------|--| | | (A)
(C) | collenchyma
dead parenchyma | (B)
(D) | living parenchyma
sclerenchyma | | 24. | Asexua | l reproductive structure in bacteri | a is | | | | (A)
(C) | akinetes
endospores | (B)
(D) | heterocysts
exospores | | 25. | The lig | tht harvesting complexes contain | anten | na pigments associated with | | | (A)
(C) | lipids
carbohydrates | (B)
(D) | starches
proteins | | 26. | Seedles | ss fruits can be obtained by the app | plicat | ion of 1 | | | (A)
(C) | cytokinin
ABA | (B)
(D) | gibberllin
ethylene | | 27. | A biose | ensor uses a biological material su | ch as | * * * | | | (A) | a cell
an antibody | (B)
(D) | an enzyme All of the above | | 28. | Minera | l salts exist inside the cells as | | Zing a Wilthorn graph | | , | (A)
(C) | 25-64 PCA | (B) | solubilized molecules colloidal form | | 29. | Which | of the following groups of elemen | ts are | called 'critical elements'? | | | (A)
(B)
(C)
(D) | Zinc, Copper and Iron
Chlorine, Copper and Iron
Nitrogen, Oxygen and Hydrogen
Phosphorus, Potassium and Nitro | | Time to the second seco | | 30. | The phy | tohormone that induces cell divis | ion is | | | iqeli z | (A)
(C) | The same of sa | (B)
(D) | abscisic acid
ethylene | | EM BIN | |--------| | Hiller | | 31. | Which o | of the following cell organelle | is not a | microbody? | | |-----|----------------|-----------------------------------|-----------
--|----------------| | | (A) | Ribosomes | (B) | Peroxisomes | | | | (C) | Spherosomes | (D) | Liposomes | | | | (0) | opiiciosomes | (2) | Biposomes | | | 32. | Which 1 | part of the cotton plant is the s | ource for | pure cellulose? | | | | (A) | Seed hairs | (B) | Stem hairs | | | | (C) | Root hairs | (D) | Petals | | | | (-) | | (2) | The Jan 1 | | | 33. | The site | e of respiration in bacteria is | • | ge of a | | | | (A) | microsome | (B) | mesosome | | | | (C) | episome | (D) | ribosome | | | | | • | (-) | Manual State of the th | | | 34. | The terr | m allelomorphy means | | | | | | (A) | a pair of non-contrasting char | acters | | | | | (B) | a pair of contrasting character | | | | | | (C) | any two sexual characters | | | | | | (D) | sex linked character | | 9 | | | | 2 2 | | | ,, | | | 35. | The ma | jor role of phosphorous in plar | it metabo | olism is to | | | 8 | (A) | generate metabolic energy | | 1. | | | | (B) | evolve oxygen during photos | ynthesis | | | | | (C) | evolve ethylene during fruit r | ipening | 0.5 | | | | (D) | perform oxidation | | diana i | | | | | | | | | | 36. | Which | among the following is a prok | aryote? | to you, we | · | | | (A) | Spirogyra | (B) | Nostoc | | | | | Saccharomyces cerviciea | | | | | | ASTR 2007 (20) | | 1000-1000 | | | | 37. | The ter | m protoplasm was coined for | r the co | ontents of embryo | genic cells of | | | plants b | ру | 149 | | | | | ar. | 30 | ** | 1. A. Serie | | | | (A) | Hugo van Mohi | (B) | Dujardin · | | | | (C) | Purkinje | (D) | Hooke | | | | (- / | w | | d Karpini | | | | | | | | | 127 miles etto disello | | | | 10 | | |----------|------------|---------------------------------|--------------|--| | 38. | The m | ain function of Golgi comple | x is | August a state of | | | (A) | fermentation | | | | | (B) | phosphorylation | | | | | (C) | | | | | | (D) | glycosilation of lipids and | proteins | of the expendition | | 39. | Cell pl | ate formation in plants occur | s from | geldinin 14a - | | | (A) | periphery to centre | | A 1 1 1 | | | (B) | | | | | | (C) | top to bottom of the cell | 7 1987 10 | The Section of Se | | | (D) | | | | | | | to top of the con | | | | 40.
· | Chemi | cal synthesis of DNA was wo | orked out l | ру | | | (A) | Khorana | (B) | Watson and Crick | | | (C) | Komberg | | | | | (0) | Komoeig | (D) | Nirenberg | | 41. | Peroxi | somes in plants are associated | l with | r | | | (A) | photoperiodism | (B) | phototropism | | | (C) | photosynthesis | (D) | photorespiration | | 42. | Cellulo | osic cell walls can be specific | ally staine | d by | | | (A) | Methylene blue | (B) | Sudan IV | | | (C) | Zinc chloride | (D) | Phloroglucinol | | 13. | The pla | ane of cell wall formation in o | | 1701 | | • | - A Pic | mo or oon wan tormation in (| iividilig Ce | in is determined by- | | | (A) | Microfilament | (B) | Microtubules | | | (C) | Endoplasmic reticulum | (D) | Ribosomes | | 14. | In whic | h part of the mitochondria is | ATP gene | erated? | | | (A) | Matrix | (B) | Cristae | | | (C) | Outer membrane | 100 | | | | (5) | Washington . | (D) | F ₁ particle | | 5. | Desmos | somes are related to | | 11 s
State (2) | | - 4 | (A) | cellular excretion | (B) | cytolysis | | | (C) | cell adherence | (D) | cell division | | | 1150 15.57 | | | 417101011 | | 46. | The nur | nber of bases per helical turn in | Z-DN | A is | 5-3 | |-----|--------------------------|---|------------|---|--------| | | (A)
(C) | 10
12 | (B)
(D) | 11
13 *** *** *** (\$.) | | | 47. | The pig | ment found inside the vacuole is | S | n fil our smage h | 2.5 | | | (A)
(C) | anthocyanin
phycoxanthin | (B)
(D) | fucoxanthin
phycoerythrin | | | 48. | Endopl | asmic reticulum is more develop | ed in | | ** | | | (A)
(C) | young cells
mature cells | (B)
(D) | green cells
bacteriophage | | | 49. | The ter | m 'Parsamorpha' refers to | | Y 6 F | | | | (A)
(C) | nucleolus
nuclear pore complex | (B)
(D) | nuclear membrane
endoplasmic reticulum | V E | | 50. | The site | e of formation of spindle fibers i | n nucle | colus is localized in | | | | (A)
(C) | chromosomes peroxysomes | (B)
(D) | ribosomes
tonoplast | Ç. | | 51. | Which | of the following is incorrectly n | natched | ? | | | | (A)
(B)
(C)
(D) | Peroxysomes and ribosomes
Lysosomes and glycosidases
Golgi complex and carbohydra
Mitochondria and cristae | ates | la chiquada entre | | | 52. | Which
fungus | of the following growth reg | ulators | was extracted initially | from a | | | (A)
(C) | Cytokinin
Ethylene | (B)
(D) | Auxin
Gibberellin | ne, | | 53. | Cytoki | nins are synthesized in | 92 | 1.57 | | | | (A)
(C) | stems
fruits | (B)
(D) | leaves
roots | 28 | | 54. | Which | of the following delays senescen | de? | | |-------|--------------------------|---|------------|-----------------------------------| | | (A)
(C) | Cytokinin
Gibberellins | (B)
(D) | Auxins
Ascorbic acid | | 55. | Legumo | e seeds exhibit dormancy because | e of | | | | (A)
(B)
(C)
(D) | poorly developed embryo
hard seed-coat
absence of cytokinins
absence of Gibberellic acid | = <u>s</u> | | | 56. | All cyto | okinins are | * | | | | (A)
(C) | acidic phenols | (B)
(D) | aminopurines
glycosides | | , 57. | The ena | zyme catalase in green leaf cell is | local | ized in the | | | (A)
(C) | lysosomes vacuoles | (B)
(D) | chloroplast peroxisomes | | 58. | Which | of the following colours of light | works | least for photosynthesis? | | | (A)
(C) | Green
Blue and red | (B)
(D) | Yellow
Violet and yellow |
| 59. | When s | un light is absorbed by chloropla | sts, p | H is lowest in the | | | (A)
(B)
(C)
(D) | stroma
space enclosed by the inner and
spaces enclosed by the thylakoi
cytosol | | | | 60. | Which | of the following is a component | of mit | osis in the cells of seed plants? | | | (A)
(C) | Centrioles
Spindles | (B)
(D) | Asters
Cleavage furrows | | 61. | The rep | olication of DNA is possible due | to | a market (A) | | | (A)
(C) | the genetic code
the base paring rules | (B)
(D) | membrane lipids
aminoacids | .60211 | 62. | The second event in translation, after mRNA binding is | | | | | | |-----|--|--|--------------------|--|------|--| | | (A)
(B)
(C)
(D) | synthesis of aminoacids from
translocation through the nuc
joining together of the two ri
rotation of the polysomal uni | lear env
bosoma | | | | | 63. | Genes | that are inactive for long period | ls are bo | onded to a called set to display | | | | | (A)
(C) | each other
actin and myosin | (B)
(D) | methyl groups the nucleolus | | | | 64. | When called | the substrate of an enzyme st | imulate | s synthesis of that enzyme, it is | | | | | | | | traj tievini la Au | | | | • | (A)
(C) | repressor
activator | (B)
(D) | inducer excitant | | | | 65. | Ploidy | of anther cell wall is | | The state of s | | | | | (A)
(C) | haploid
triploid | (B)
(D) | diploid
tetraploid | | | | 66. | Thallop | ohytes without chlorophylls are | | the second of the second of | į | | | × | (A)
(B)
(C)
(D) | algae
algae other than green algae
fungi
bacteria | a
Sil | The contract of o | | | | 67. | Respira | tion is | | t forms want ending of
the light grown it is a | 9/ | | | | (A)
(C) | exothermic process anaboloic reaction | (B)
(D) | endothermic reaction proteolytic reaction | | | | 58. | Back-cı | ross involves | | - Maria to des | | | | | (A)
(B)
(C)
(D) | a hybrid and one of its parents
Fl hybrids
maternal and paternal parents
regenerated generation (R1) | | Transferrance (A. | er i | | | | (2) | | valar fil | of an equal end action total place by | | | begud (E) partioused (a) Joannou oj oumouumu | | | • | | | |-----|------------|---|------------|---| | 69. | Pigmen | it that is known as eye of the pla | nt is | | | | (A)
(C) | cytochrome | (B)
(D) | phytochrome carotenoids | | 70. | Which | of the following contains extra-r | nuclear | genetic material? | | | (A)
(C) | Chromosomes
Ribosomes | (B)
(D) | Golgi apparatus
Plastids | | 71. | Stroma | refers to | | | | | (A)
(C) | stomatal pore
chloroplast matrix | (B)
(D) | lamellae in the chloroplast
mitochondrial matrix | | 72. | Linked | genes are present | | | | | (A)
(C) | on different chromosome in only the sex chromosomes | (B)
(D) | in the same chromosome in different autosomes | | 73. | Atmos | pheric N ₂ is fixed by | | | | 6 | (A)
(C) | blue – green algae
brown algae | (B)
(D) | green algae
red algae | | 74. | In allop | patric speciation, the initial barrie | er to ge | ene flow is | | | (A)
(C) | behavioural
geographic | (B)
(D) | postzygotic
ecological | | 75. | Male g | ametophyte in higher plants is | | Standard Con | | | (A)
(C) | pollen grain
anther-wall cells | (B)
(D) | egg cell
sepal cells | | 76. | Connec | ting link between Protozoa and | Porifer | a is | | | (A)
(C) | chlamydomonas
pteroserospongia | (B)
(D) | protopterus
euglena | | 77. | When p | lant cells are kept in hypertonic | solutio | on they get | | | (A) | lysed | (B) | turgid
deplasmolysed | | 78. | Spoilage | of food material is preve | ented in | cold s | torage | due to | the | | | |--------------|--------------------------|---|---------------|---------------|----------|---------|----------|--------------|-------| | | (B)
(C)
(D) | reduced respiration at loved reduced enzyme activity reduced enzyme activity purified nature of air | in the fo | ood
obes a | s well | | | | | | 79. | The enz | ymes catalyzing breakdo | wn with | out ad | dition | of wate | r are ca | illed | | | 19. | 1110 011- | , | | (D) | 1 | ases | | | | | e y (2 2000) | (A)
(C) | lyases
ligases | N 155 | (B)
(D) | oxidor | educta | ses | | | | 80. | Viral or | acogene differs from the | protoono | cogene | e in tha | t it is | | | | | | (A)
(C) | mutated
circular | | (B)
(D) | | g tande | т гере | A.: | | | , 81. | Who w | vas the predecessor of Leristics? | Darwin v | vho d | | | theory | of acq | uired | | | (A)
(C) | Malthus | | (B)
(D) | Meno | arck | N | to v | | | 82. | Arabid | lopsis is advantageous fo | | | | | nuse | 3 | | | * | (A)
(B)
(C)
(D) | it is an endangered spe
it is closest to humans | ecies | | | | can be | raised | • | | 83. | Fruit s | softening during ripening | g is due t | .0 | | 1(1) | | ola . | | | | (A)
(B)
(C) | dissolution of middle
respiration
drop in turgor pressur
photosynthesis | lamella
re | | | | | oli in | , 2 | | 84. | | ell organelle involve in to endoplasmic reticulu | | (E | 3) per | roxison | nes | (-1)
(-1) | | | | (A
(C | · · bondria | | . (I |) 11b | osome | S | No. | | | 85. | Deficiency of which element causes chlorosis | | | | | | | |-----|--|--|------------|---|--|--|--| | | (A)
(C) | magnesium | (B)
(D) | chlorine
sulphur | | | | | 86. | Apical 1 | meristem is seen in | | | | | | | | (A)
(C) | leaf apex
vascular bundle | (B)
(D) | shoot apex
cortex | | | | | 87. | On ferti | lization the secondary nucleus f | orms | 16 vil | | | | | 20 | (A)
(C) | sced
endosperm | (B)
(D) | embryo
cotyledons | | | | | 88. | Larger | nucleus in pollen grain is | | | | | | | | (A)
(C) | vegelative nucleus
male gamete nucleus | (B)
(D) | generative nucleus
prothallial nucleus | | | | | 89. | Polyem | bryony occurs in | | 8
J. v. * | | | | | | (A)
(C) | citrus | (B)
(D) | maize
carthamus | | | | | 90. | All are | essential aminoacids except | 1 | | | | | | | (A)
(C) | glycine
valine | (B)
(D) | trptophan
phenylalanine | | | | | 91. | Which | one of the following is a natural | growt | h inhibitor? | | | | | | (A)
(C) | NAA
ABA | (B)
(D) | GA ₃
Auxin | | | | | 92. | The ma | in gaseous pollutant of fossil fu | el burn | ing is | | | | | | (A)
(B)
(C)
(D) | Hydrogen peroxide Nitrous oxide Nitric oxide Sulphur dioxide | * - | er ellegge og | | | | | 93. | The red wood of China is | taka dan menganan Ti | |---------|--
--| | å | (A) Cycas revolute
(C) Pinus longifolia | (B) Pinus gerardiana(D) Cedrus spp. | | 94. | Which fungus produces a reddish violet | pigment- Necercosporin? | | | (A) Neurospora crassa (C) Monascus purpureus | (B) Armillaria mellea (D) Cercosporina kikuchii | | 95. | Which group of plants can grow in nitro | gen-denoient some | | , | (A) Insectivorous plants(C) Gymnosperms | (B) Bryophytes (D) Lichens | | 96. | Parthenocarphy is achieved by the appli | ication of | | | (A) auxin
(C) enzymes | (B) gibberllins (D) cytokinin | | 97. | Which of the following is energy wasti | ng process? | | | (A) Photosynthesis(C) Photorespiration | (B) Chemosynthesis (D) Photoperiodism | | 98. | Totipotency refers to | 9 6 44F | | | (A) potential for secondary metable (B) development of complete org (C) potential for producing a set of (D) potential for development of | of organs | | 99. | Ploidy of endosperm is | e de la companya l | | * * - * | (A) haploid
(C) triploid | (B) diploid (D) tetraploid | | 100 | O. Sessile refers to | il sign for a | | | (A) apomixis | (B) asexual reproduction (D) para-sexual hybridization | NATURE OF THE PARTY PART | 101. | Sproutin | g of stored potatoes can be pro | evented | by | | |------|--------------------------|---|------------|--|------| | | (A)
(C) | IAA
gibberllin | (B)
(D) | cytokinin
malic hydrazide | | | 102. | The plan | nt that blooms once in a dozen | year is | | | | | (A)
(C) | Saccharum officinarum
Strobillanthus spp. | (B)
(D) | Stevea spp.
Solanum spp. | | | 103. | PS-II in | volves | | | | | | (A)
(C) | Chlorophyll a - 680
Chlorophyll a - 670 | (B)
(D) | Chlorophyll a – 660
Chlorophyll a – 700 | | | 104. | Abaxial | refers to | | | | | | (A)
(B)
(C)
(D) | surface facing away from the
surface facing the axis
lateral axis produced from a
tendril produced from a node | node | | | | 105. | In red o | drop effect, the curve drops dra | amatical | ly in the region | | | K | (A)
(C) | at 680nm
below 680nm | (B)
(D) | above 680nm
at 280nm | | | 106. | How m | nany electrons are needed to re | duce 6 1 | molecules of CO ₂ ? | | | | (A)
(C) | 36
24 | (B)
(D) | 48
84 | | | 107. | RUBI | SCO is a | | | [97] | | | (A)
(C) | | | protein of 5,57,000 Dale
phytohormone | tons | | 108. | Comp | erisation point is the value of f | factor wl | nere there is | | | 775 | (A)
(B)
(C)
(D) | little photosynthesis photosynthesis equal to the | rate of | respiration
spiration | | | 109. | The firs | t stable product of Hatch and Sla | ick cyc | ele is and some man. | c.l. | |------------|-----------------|---|-----------|-------------------------|------------| | | (A) | PGA | (B) | OAA | | | | (C) | RUBP | (D) | Malate | | | 110. | Aleuron | e layer is characteristic of | | | | | | (A) | cereal seeds | (B) | legume seeds | | | | (C) | grape seeds | (D) | greenpea seeds | | | 111. | The mo | rphine obtained from opium is | | tiller Hyris | | | | (A) | alkaloid | (B) | latex | | | | (C) | gum | (D) | resine | | | 112. | The pla | nts of Compositae bear persister | it hairy | calyx called | | | | (A) | glume | (B) | lemma | | | , | (C) | pappus | (D) | rhizophore | | | 113. | Pectina | se activity leads to the productio | n of | real family of the | | | | (A) | single cells | (B) | protoplasts | • | | inforth to | (C) | leucoplasts | (D) | amyloplasts | | | 114. | | er is transpired from the leaf mes
otential than the | sophyl | cells they develop a lo | ower | | | 11 7 | | outlier w | went (A) | 1 | | | 1002 | root xylem sap | (B) | | | | | (C) | leaf xylem sap | (D) | flower xylem sap | | | 115. | Stomat | a having pores bounded by a sin | gle rin | g-shaped guard cells ar | e found in | | | (A) | leaf of fern | (B) | pinnule of Cycas | | | | (C) | capsule of Funaria | (D) | None of the above | | | 116. | Conjug | ated form of auxin is | The . | | 471 | | | (A) | IAA- alanine | (B) | 2, 4-D | | | | (C) | IBA : | (D) | NAA | | | 117. | Which | of the following plants bear not | lulated | roots? | AL.I | | | (A) | Monotrapa | (B) | Arachis hypogea | | | | (C) | Mangifera indica | (D) | Arabidopsis thaliana | | | 118. | Among th | e following fruits which o | ne bears th | alamus as its edible part? | | |--------------|--|--|--------------------------------------|---|----| | | | | (B) | Peach | | | | | herry | (D) | Anacordium | | | | (C) P | lum | (D) | Amaooro | | | 119. | Phylogene | etic classification is based | on | 4. | | | | 201 Movembro | | (B) | utilitarian system | | | | (A) o | verall similarity | 100 | common evolutionary descer | ıt | | | (C) h | abits | (D) | Common evolutions | | | €. | च ४३ | g 114 1 30 | | | | | 120. | Gregore N | Mendel employed | n # | , , , , , , , , , , , , , , , , , , , | | | 120. | Grogore : | • | | | | | | (4) 7 | lea mays | (B) | Pisum sativum | | | | | | (D) | Oryza sativa | | | | (C) V | 'igna radiata | (2) | | | | 121. | High lysin | ne content is present in | | | | | | | | (D) | maize | | | | 1 / | ice | (B) | | | | - | (C) p | ennicetum | (D) | wheat | | | 122. | Natural c | lassification is based on | | · 4 4 4 4 4 1 1 | | | | | | 4230 | | | | | (A) (| ontogeny | (B) m | orphology | | | | | | | | | | | | | (D) bo | oth phylogeny and morphology | y | | | | phylogeny | (D) be | oth phylogeny and morphology | y | | 102 | (C) 1 | phylogeny | (D) bo | oth phylogeny and morphology | y | | 123. | (C) 1 | | (D) bo | oth phylogeny and morphology | y | | 123. | (C) 1
Multiple | phylogeny fission occurs in | 3 | | y | | 123. | (C) 1 Multiple (A) | ohylogeny fission occurs in | (B) | plasmodium | y | | 123. | (C) 1 Multiple (A) | phylogeny fission occurs in | (B) | | y | | 123. | (C) I Multiple (A) I (C) I | phylogeny fission occurs in hydra planaria | (B)
(D) | plasmodium
algae | y | | ٠ | (C) I Multiple (A) I (C) I | phylogeny fission occurs in hydra planaria | (B)
(D) | plasmodium
algae | y | | 123.
124. | (C) I Multiple (A) I (C) I | ohylogeny fission occurs in | (B)
(D) | plasmodium
algae | y | | ٠ | (C) I Multiple (A) I (C) I Hybridiz | phylogeny fission occurs in hydra planaria ation through protoplast is | (B)
(D) | plasmodium
algae | у | | ٠ | (C) I Multiple (A) I (C) I Hybridiz | ohylogeny fission occurs in hydra planaria ation through protoplast is | (B)
(D)
known as
(B) | plasmodium
algae | у | | ٠ | (C) I Multiple (A) I (C) I Hybridiz | phylogeny fission occurs in hydra planaria ation through protoplast is | (B)
(D)
known as | plasmodium
algae
pure line selection | у | | 124. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) | phylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization | (B)
(D)
known as
(B) | plasmodium
algae
pure line selection | y | | ٠ | (C) I Multiple (A) I (C) I Hybridiz (A) (C) | ohylogeny fission occurs in hydra planaria ation through protoplast is | (B)
(D)
known as
(B) | plasmodium
algae
pure line selection | y | | 124. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : | ohylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a
product of | (B)
(D)
known as
(B)
(D) | plasmodium
algae
pure line selection
mass selection | y | | 124. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : | phylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization | (B)
(D)
known as
(B)
(D) | plasmodium algae pure line selection mass selection | y | | 124. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic (A) | ohylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a product of | (B)
(D)
known as
(B)
(D) | plasmodium
algae
pure line selection
mass selection | y | | 124. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : | phylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a product of acetic acid | (B)
(D)
known as
(B)
(D) | plasmodium algae pure line selection mass selection | у | | 124.
125. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : (A)- (C) | ohylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a product of acetic acid starch | (B)
(D)
known as
(B)
(D) | plasmodium algae pure line selection mass selection | у | | 124. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : (A)- (C) | phylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a product of acetic acid | (B)
(D)
known as
(B)
(D) | plasmodium algae pure line selection mass selection | у | | 124.
125. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : (A) (C) Polygeni | ohylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a product of acetic acid starch ic inheritance is also refer | (B) (D) known as (B) (D) (B) (D) | plasmodium algae pure line selection mass selection acetyl CoA glucose | у | | 124.
125. | (C) I Multiple (A) I (C) I Hybridiz (A) (C) Pyruvic : (A) (C) Polygeni (A) | ohylogeny fission occurs in hydra planaria ation through protoplast is clonal selection somatic hybridization acid is a product of acetic acid starch | (B)
(D)
known as
(B)
(D) | plasmodium algae pure line selection mass selection acetyl CoA glucose quantitative trait | у | ENGL. AND MAMMAMAN | 127. Entry of pollen tube through micropile is | s called | |--|--| | (A) misogamy (C) chalasogamy | (B) pseudogamy (D) porogamy | | 128. Chloroplasts are considered as self-repli | cating because they contain | | (A) RNA
(C) both RNA and DNA | (B) DNA (D) neither RNA nor DNA | | 129. Squashes are preserved by adding | n of the second | | (A) Malic acid (C) Sodium metabisulphate | (B) Succinic acid(D) All of the above | | 130. Increase in the percentage of fauna and because of | I decrease in the flora may be dangerous | | (A) increased percentage of CO₂ (B) decreased percentage of CO₂ (C) increased percentage of O₂ (D) increased percentage of radio | active fall out | | 131. In the flower of Vallisneria, the stalk | is coiled in | | (A) male flowers(C) bisexual flowers | (B) female flowers(D) none of the above | | 132. The distance between the two base pa | airs of DNA is | | (A) 3.4A°
(C) 340A° | (B) 34A°
(D) 3400A° | | 133. The fungus without mycelium is | At a first said | | (A) ustilago
(C) saccharomyces | (B) alternaria
(D) albugo | | 134. Spiral roots called pneumatophores | are characteristic of plants growing in | | (A) sandy soils
(C) sodic soils | (B) dry-land soils(D) marshy and salt soils | | 135. | Nutritio | n rich single cell protein i | s produ | iced fr | om | |------|------------|-------------------------------------|-------------------|------------|--------------------------------| | | (A)
(C) | chlamydomonas
amoeba | | (B)
(D) | chlorella
entamoeba | | 136. | Last sta | bilized community in plan | nt succe | ession | is called | | | (A)
(C) | seral community | x :
Fan | (B)
(D) | | | 137. | Keratin | is a protein having larger | amoun | t of | *i | | | 200 | Calcium
Magnesium | | (B)
(D) | Sulphur
Phosphorus | | 138. | Actinic | wavelength of Pr is | * | | 1 | | e, | (A)
(C) | 660 nm
560 nm | | (B)
(D) | 710 nm
400 nm | | 139. | Transfe | ormation experiment was | first per | forme | d on | | | | Diplococcus pnemoniae
Salmonella | | (B)
(D) | | | 140. | Vernili | zation is incubation invol- | ving | | | | - T | (A)
(C) | heat-shock
osmotic shock | | (B) | cold-shock
water shock | | 141. | Scienti | fic name of pigeonpea is | | | | | | (A)
(C) | Cajanus cajan
Vigna radiate | | (B)
(D) | Vigna mungo
Cicer arietinum | | 142. | The bio | o-insecticide azadirachin- | s obtain | ned fro | om | | | (A)
(C) | . Tobacco
Neem | * 4 | (B)
(D) | Bacillus
Fungi | | 143. | Water | potential of pure water is | | | ==
| | | (A)
(C) | 1 unit
–2 unit | | (B)
(D) | –1 unit
–3 unit | | 144. | Mode of action of phytohormones is referred as | |------|--| | | | | / A \ | 프레카카 사는 - 카리아(1811) | |-------|---------------------| | (A) | synergistic | | V/ | -7 | (B) one hormone-one response (C) cumulative (D) additive ### 145. Plants composed of algae and fungus are - (A) -- Eumycota (B) Lichens (C) Scchizophyta (D) Chrysophyta #### 146. Cotton belongs to (A) asclepiadaceae (B) malvaceae (C) aeraceae (D) asteraceae ### 147. Labellum is present in (A) fabaceae (B) oleaceae (C) solanaceae (D) orchidaceae ### 148. Zygotene refers to (A) meiotic prophase (B) mitotic prophase (C) metaphase (D) anaphase ## 149. Velamin tissue is present in (A) tap root (B) water absorbing tissue of aerial root (C) primary root (D) adventitious root # 150. Gametophytes in seed plants are (A) reduced but independent (B) primitive and independent (C) primitive and dependent on sporophyte (D) reduced and parasite on sporophyte ***